Modern Data Analysis

Download Modern Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Modern Data Analysis

Modern Data Analysis contains the proceedings of a Workshop on Modern Data Analysis held in Raleigh, North Carolina, on June 2-4, 1980 under the auspices of the United States Army Research Office. The papers review theories and methods of data analysis and cover topics ranging from single and multiple quantile-quantile (Q-Q) plotting procedures to biplot display and pencil-and-paper exploratory data analysis methods. Projection pursuit methods for data analysis are also discussed. Comprised of nine chapters, this book begins with an introduction to styles of data analysis techniques, followed by an analysis of single and multiple Q-Q plotting procedures. Problems involving extreme-value data and the behavior of sample averages are considered. Subsequent chapters deal with the use of smelting in guiding re-expression; geometric data analysis; and influence functions and regression diagnostics. The final chapter examines the use and interpretation of robust analysis of variance for the general non-full-rank linear model. The procedures are described in terms of their mathematical structure, which leads to efficient computational algorithms. This monograph should be of interest to mathematicians and statisticians.
Modern Data Science with R

From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
Intelligent Data Analysis

This monograph is a detailed introductory presentation of the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues, ranging from the basic concepts of probability, through general notions of inference, to advanced multivariate and time series methods, as well as a detailed discussion of the increasingly important Bayesian approaches and Support Vector Machines. The following chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions into the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on Visualization and a higher-level overview of the IDA processes, which illustrates the breadth of application of the presented ideas.