Modern Classification Theory Of Superconducting Gap Nodes

Download Modern Classification Theory Of Superconducting Gap Nodes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Classification Theory Of Superconducting Gap Nodes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Modern Classification Theory of Superconducting Gap Nodes

This book puts forward a modern classification theory for superconducting gap nodes, whose structures can be observed by experiments and are essential for understanding unconventional superconductivity. In the first part of the book, the classification method, based on group theory and K theory, is introduced in a step-by-step, pedagogical way. In turn, the latter part presents comprehensive classification tables, which include various nontrivial gap (node) structures, which are not predicted by the Sigrist-Ueda method, but are by the new method. The results obtained here show that crystal symmetry and/or angular momentum impose critical constraints on the superconducting gap structures. Lastly, the book lists a range of candidate superconductors for the nontrivial gap nodes. The classification methods and tables presented here offer an essential basis for further investigations into unconventional superconductivity. They indicate that previous experimental studies should be reinterpreted, while future experiments should reflect the new excitation spectrum.
Modern Classification Theory of Superconducting Gap Nodes

This book puts forward a modern classification theory for superconducting gap nodes, whose structures can be observed by experiments and are essential for understanding unconventional superconductivity. In the first part of the book, the classification method, based on group theory and K theory, is introduced in a step-by-step, pedagogical way. In turn, the latter part presents comprehensive classification tables, which include various nontrivial gap (node) structures, which are not predicted by the Sigrist-Ueda method, but are by the new method. The results obtained here show that crystal symmetry and/or angular momentum impose critical constraints on the superconducting gap structures. Lastly, the book lists a range of candidate superconductors for the nontrivial gap nodes. The classification methods and tables presented here offer an essential basis for further investigations into unconventional superconductivity. They indicate that previous experimental studies should be reinterpreted, while future experiments should reflect the new excitation spectrum.
Novel Group Theoretical Methods for Electron Structure Theory

Author: Victor G. Yarzhemsky
language: en
Publisher: Springer Nature
Release Date: 2025-02-22
This book presents the induced representation method, a powerful technique in quantum mechanics with applications in condensed matter physics. After introducing the key concepts in group theory and representation theory necessary to understate the technique, the author goes on to explore applications in electron structure theory, namely: basis sets in clusters, normal vibrations, selection rules, two-electron wavefunctions, and space-group representations. This technique allows the simplification of standard techniques for the analysis of molecular orbitals and normal vibrations of molecules. A space group approach to the wavefunction of a Cooper pair based on the Anderson ansatz and Mackey-Bradley theorem is developed, and several applications are considered, namely group-theoretical nodes, non-symmorphic groups, and unification of the group theoretical and topological approaches to the structure of Cooper pairs in unconventional superconductors.