Models Of The Real Projective Plane


Download Models Of The Real Projective Plane PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Models Of The Real Projective Plane book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Models of the Real Projective Plane


Models of the Real Projective Plane

Author: Francois Apery

language: de

Publisher: Springer-Verlag

Release Date: 2013-03-09


DOWNLOAD





In the present time, objects generated by computers are replacing models made from wood, wire, and plaster. It is interesting to see how computer graphics can help us to understand the geometry of surfaces and illustrate some recent results on representations of the real projective plane.

The Universe of Conics


The Universe of Conics

Author: Georg Glaeser

language: en

Publisher: Springer

Release Date: 2016-03-22


DOWNLOAD





This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries. With more than two thousand years of history, conic sections play a fundamental role in numerous fields of mathematics and physics, with applications to mechanical engineering, architecture, astronomy, design and computer graphics. This text will be invaluable to undergraduate mathematics students, those in adjacent fields of study, and anyone with an interest in classical geometry. Augmented with more than three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises.

Euclidean, Non-Euclidean, and Transformational Geometry


Euclidean, Non-Euclidean, and Transformational Geometry

Author: Shlomo Libeskind

language: en

Publisher: Springer Nature

Release Date: 2024-10-22


DOWNLOAD





This undergraduate textbook provides a comprehensive treatment of Euclidean and transformational geometries, supplemented by substantial discussions of topics from various non-Euclidean and less commonly taught geometries, making it ideal for both mathematics majors and pre-service teachers. Emphasis is placed on developing students' deductive reasoning skills as they are guided through proofs, constructions, and solutions to problems. The text frequently emphasizes strategies and heuristics of problem solving including constructing proofs (Where to begin? How to proceed? Which approach is more promising? Are there multiple solutions/proofs? etc.). This approach aims not only to enable students to successfully solve unfamiliar problems on their own, but also to impart a lasting appreciation for mathematics. The text first explores, at a higher level and in much greater depth, topics that are normally taught in high school geometry courses: definitions and axioms, congruence, circles and related concepts, area and the Pythagorean theorem, similarity, isometries and size transformations, and composition of transformations. Constructions and the use of transformations to carry out constructions are emphasized. The text then introduces more advanced topics dealing with non-Euclidean and less commonly taught topics such as inversive, hyperbolic, elliptic, taxicab, fractal, and solid geometries. By examining what happens when one or more of the building blocks of Euclidean geometry are altered, students will gain a deeper understanding of and appreciation for Euclidean concepts. To accommodate students with different levels of experience in the subject, the basic definitions and axioms that form the foundation of Euclidean geometry are covered in Chapter 1. Problem sets are provided after every section in each chapter and include nonroutine problems that students will enjoy exploring. While not necessarily required, the appropriate use of freely available dynamic geometry software and other specialized software referenced in the text is strongly encouraged; this is especially important for visual learners and for forming conjectures and testing hypotheses.


Recent Search