Models Of Random Processes

Download Models Of Random Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Models Of Random Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Random Processes for Engineers

Author: Bruce Hajek
language: en
Publisher: Cambridge University Press
Release Date: 2015-03-12
An engaging introduction to the critical tools needed to design and evaluate engineering systems operating in uncertain environments.
Models of Random Processes

Devising and investigating random processes that describe mathematical models of phenomena is a major aspect of probability theory applications. Stochastic methods have penetrated into an unimaginably wide scope of problems encountered by researchers who need stochastic methods to solve problems and further their studies. This handbook supplies the knowledge you need on the modern theory of random processes. Packed with methods, Models of Random Processes: A Handbook for Mathematicians and Engineers presents definitions and properties on such widespread processes as Poisson, Markov, semi-Markov, Gaussian, and branching processes, and on special processes such as cluster, self-exiting, double stochastic Poisson, Gauss-Poisson, and extremal processes occurring in a variety of different practical problems. The handbook is based on an axiomatic definition of probability space, with strict definitions and constructions of random processes. Emphasis is placed on the constructive definition of each class of random processes, so that a process is explicitly defined by a sequence of independent random variables and can easily be implemented into the modelling. Models of Random Processes: A Handbook for Mathematicians and Engineers will be useful to researchers, engineers, postgraduate students and teachers in the fields of mathematics, physics, engineering, operations research, system analysis, econometrics, and many others.