Models And Inferences In Science


Download Models And Inferences In Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Models And Inferences In Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Models and Inferences in Science


Models and Inferences in Science

Author: Emiliano Ippoliti

language: en

Publisher: Springer

Release Date: 2016-01-27


DOWNLOAD





The book answers long-standing questions on scientific modeling and inference across multiple perspectives and disciplines, including logic, mathematics, physics and medicine. The different chapters cover a variety of issues, such as the role models play in scientific practice; the way science shapes our concept of models; ways of modeling the pursuit of scientific knowledge; the relationship between our concept of models and our concept of science. The book also discusses models and scientific explanations; models in the semantic view of theories; the applicability of mathematical models to the real world and their effectiveness; the links between models and inferences; and models as a means for acquiring new knowledge. It analyzes different examples of models in physics, biology, mathematics and engineering. Written for researchers and graduate students, it provides a cross-disciplinary reference guide to the notion and the use of models and inferences in science.

Scientific Models in Philosophy of Science


Scientific Models in Philosophy of Science

Author: Daniela M. Bailer-Jones

language: en

Publisher: University of Pittsburgh Pre

Release Date: 2009-09-13


DOWNLOAD





Scientists have used models for hundreds of years as a means of describing phenomena and as a basis for further analogy. In Scientific Models in Philosophy of Science, Daniela Bailer-Jones assembles an original and comprehensive philosophical analysis of how models have been used and interpreted in both historical and contemporary contexts. Bailer-Jones delineates the many forms models can take (ranging from equations to animals; from physical objects to theoretical constructs), and how they are put to use. She examines early mechanical models employed by nineteenth-century physicists such as Kelvin and Maxwell, describes their roots in the mathematical principles of Newton and others, and compares them to contemporary mechanistic approaches. Bailer-Jones then views the use of analogy in the late nineteenth century as a means of understanding models and to link different branches of science. She reveals how analogies can also be models themselves, or can help to create them. The first half of the twentieth century saw little mention of models in the literature of logical empiricism. Focusing primarily on theory, logical empiricists believed that models were of temporary importance, flawed, and awaiting correction. The later contesting of logical empiricism, particularly the hypothetico-deductive account of theories, by philosophers such as Mary Hesse, sparked a renewed interest in the importance of models during the 1950s that continues to this day. Bailer-Jones analyzes subsequent propositions of: models as metaphors; Kuhn's concept of a paradigm; the Semantic View of theories; and the case study approaches of Cartwright and Morrison, among others. She then engages current debates on topics such as phenomena versus data, the distinctions between models and theories, the concepts of representation and realism, and the discerning of falsities in models.

Model-Based Reasoning in Scientific Discovery


Model-Based Reasoning in Scientific Discovery

Author: L. Magnani

language: en

Publisher: Springer Science & Business Media

Release Date: 1999-10-31


DOWNLOAD





The volume is based on the papers that were presented at the Interna tional Conference Model-Based Reasoning in Scientific Discovery (MBR'98), held at the Collegio Ghislieri, University of Pavia, Pavia, Italy, in December 1998. The papers explore how scientific thinking uses models and explanatory reasoning to produce creative changes in theories and concepts. The study of diagnostic, visual, spatial, analogical, and temporal rea soning has demonstrated that there are many ways of performing intelligent and creative reasoning that cannot be described with the help only of tradi tional notions of reasoning such as classical logic. Traditional accounts of scientific reasoning have restricted the notion of reasoning primarily to de ductive and inductive arguments. Understanding the contribution of model ing practices to discovery and conceptual change in science requires ex panding scientific reasoning to include complex forms of creative reasoning that are not always successful and can lead to incorrect solutions. The study of these heuristic ways of reasoning is situated at the crossroads of philoso phy, artificial intelligence, cognitive psychology, and logic; that is, at the heart of cognitive science. There are several key ingredients common to the various forms of model based reasoning to be considered in this book. The models are intended as in terpretations of target physical systems, processes, phenomena, or situations. The models are retrieved or constructed on the basis of potentially satisfying salient constraints of the target domain.