Modelling Under Risk And Uncertainty


Download Modelling Under Risk And Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modelling Under Risk And Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Modelling Under Risk and Uncertainty


Modelling Under Risk and Uncertainty

Author: Etienne de Rocquigny

language: en

Publisher: John Wiley & Sons

Release Date: 2012-04-30


DOWNLOAD





Modelling has permeated virtually all areas of industrial, environmental, economic, bio-medical or civil engineering: yet the use of models for decision-making raises a number of issues to which this book is dedicated: How uncertain is my model ? Is it truly valuable to support decision-making ? What kind of decision can be truly supported and how can I handle residual uncertainty ? How much refined should the mathematical description be, given the true data limitations ? Could the uncertainty be reduced through more data, increased modeling investment or computational budget ? Should it be reduced now or later ? How robust is the analysis or the computational methods involved ? Should / could those methods be more robust ? Does it make sense to handle uncertainty, risk, lack of knowledge, variability or errors altogether ? How reasonable is the choice of probabilistic modeling for rare events ? How rare are the events to be considered ? How far does it make sense to handle extreme events and elaborate confidence figures ? Can I take advantage of expert / phenomenological knowledge to tighten the probabilistic figures ? Are there connex domains that could provide models or inspiration for my problem ? Written by a leader at the crossroads of industry, academia and engineering, and based on decades of multi-disciplinary field experience, Modelling Under Risk and Uncertainty gives a self-consistent introduction to the methods involved by any type of modeling development acknowledging the inevitable uncertainty and associated risks. It goes beyond the “black-box” view that some analysts, modelers, risk experts or statisticians develop on the underlying phenomenology of the environmental or industrial processes, without valuing enough their physical properties and inner modelling potential nor challenging the practical plausibility of mathematical hypotheses; conversely it is also to attract environmental or engineering modellers to better handle model confidence issues through finer statistical and risk analysis material taking advantage of advanced scientific computing, to face new regulations departing from deterministic design or support robust decision-making. Modelling Under Risk and Uncertainty: Addresses a concern of growing interest for large industries, environmentalists or analysts: robust modeling for decision-making in complex systems. Gives new insights into the peculiar mathematical and computational challenges generated by recent industrial safety or environmental control analysis for rare events. Implements decision theory choices differentiating or aggregating the dimensions of risk/aleatory and epistemic uncertainty through a consistent multi-disciplinary set of statistical estimation, physical modelling, robust computation and risk analysis. Provides an original review of the advanced inverse probabilistic approaches for model identification, calibration or data assimilation, key to digest fast-growing multi-physical data acquisition. Illustrated with one favourite pedagogical example crossing natural risk, engineering and economics, developed throughout the book to facilitate the reading and understanding. Supports Master/PhD-level course as well as advanced tutorials for professional training Analysts and researchers in numerical modeling, applied statistics, scientific computing, reliability, advanced engineering, natural risk or environmental science will benefit from this book.

Modern Optimization Methods for Decision Making Under Risk and Uncertainty


Modern Optimization Methods for Decision Making Under Risk and Uncertainty

Author: Alexei A. Gaivoronski

language: en

Publisher: CRC Press

Release Date: 2023-10-06


DOWNLOAD





The book comprises original articles on topical issues of risk theory, rational decision making, statistical decisions, and control of stochastic systems. The articles are the outcome of a series international projects involving the leading scholars in the field of modern stochastic optimization and decision making. The structure of stochastic optimization solvers is described. The solvers in general implement stochastic quasi-gradient methods for optimization and identification of complex nonlinear models. These models constitute an important methodology for finding optimal decisions under risk and uncertainty. While a large part of current approaches towards optimization under uncertainty stems from linear programming (LP) and often results in large LPs of special structure, stochastic quasi-gradient methods confront nonlinearities directly without need of linearization. This makes them an appropriate tool for solving complex nonlinear problems, concurrent optimization and simulation models, and equilibrium situations of different types, for instance, Nash or Stackelberg equilibrium situations. The solver finds the equilibrium solution when the optimization model describes the system with several actors. The solver is parallelizable, performing several simulation threads in parallel. It is capable of solving stochastic optimization problems, finding stochastic Nash equilibria, and of composite stochastic bilevel problems where each level may require the solution of stochastic optimization problem or finding Nash equilibrium. Several complex examples with applications to water resources management, energy markets, pricing of services on social networks are provided. In the case of power system, regulator makes decision on the final expansion plan, considering the strategic behavior of regulated companies and coordinating the interests of different economic entities. Such a plan can be an equilibrium − a planned decision where a company cannot increase its expected gain unilaterally.

Sequential Binary Investment Decisions


Sequential Binary Investment Decisions

Author: Werner Jammernegg

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This book describes some models from the theory of investment which are mainly characterized by three features. Firstly, the decision-maker acts in a dynamic environment. Secondly, the distributions of the random variables are only incompletely known at the beginning of the planning process. This is termed as decision-making under conditions of uncer tainty. Thirdly, in large parts of the work we restrict the analysis to binary decision models. In a binary model, the decision-maker must choose one of two actions. For example, one decision means to undertake the invest ·ment project in a planning period, whereas the other decision prescribes to postpone the project for at least one more period. The analysis of dynamic decision models under conditions of uncertainty is not a very common approach in economics. In this framework the op timal decisions are only obtained by the extensive use of methods from operations research and from statistics. It is the intention to narrow some of the existing gaps in the fields of investment and portfolio analysis in this respect. This is done by combining techniques that have been devel oped in investment theory and portfolio selection, in stochastic dynamic programming, and in Bayesian statistics. The latter field indicates the use of Bayes' theorem for the revision of the probability distributions of the random variables over time.