Modelling Of A Bio Inspired Tactile Sensor Mimicking The Responses Of Human Mechanoreceptors

Download Modelling Of A Bio Inspired Tactile Sensor Mimicking The Responses Of Human Mechanoreceptors PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modelling Of A Bio Inspired Tactile Sensor Mimicking The Responses Of Human Mechanoreceptors book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Modelling of a Bio Inspired Tactile Sensor Mimicking the Responses of Human Mechanoreceptors

The objectives of this study are as follows to propose a bio inspired tactile sensorequipped with tactile sensing elements covering both static and dynamic components of mechanoreceptors; to assess the feasibility of replicating the function of fast adapting (FA) and slow adapting (SA) receptors using piezoelectric and piezoresistive components respectively, by using FEA simulations software COMSOL Multiphysics v 5.1; to propose a unit of a bio inspired tactile sensor with a suitable ridge dimensions including the size of the proposed strain gauge and PVDF thin film. The tactile sensor was built in mimicking the human glabrous skin properties. The skin structure was also ridged to improve the efficiency of both static and dynamic force detection in normal and shear directions. The scopes of the study are to address the optimum ridge shape, the height of the modelled epidermal ridge and to identify the optimum sensor placement (the depth below the skin surface) of the modelled bio inspired tactile sensor. Also, seek to obtain the shape and size of modelled strain gauge as well as the best strain gauges orientation with ability to predict the component of force in x,y and z directions. Finally, to produce and verified the PVDF output.
Intelligent Robotics and Applications

The three volume set LNAI 7506, LNAI 7507 and LNAI 7508 constitutes the refereed proceedings of the 5th International Conference on Intelligent Robotics and Applications, ICIRA 2012, held in Montreal, Canada, in October 2012. The 197 revised full papers presented were thoroughly reviewed and selected from 271 submissions. They present the state-of-the-art developments in robotics, automation and mechatronics. This volume covers the topics of robot actuators and sensors; robot design, development and control; robot intelligence, learning and linguistics; robot mechanism and design; robot motion analysis and planning; robotic vision, recognition and reconstruction; and planning and navigation.
Handbook of Neuroengineering

This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.