Modeling Materials

Download Modeling Materials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling Materials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Modeling Materials

Author: Ellad B. Tadmor
language: en
Publisher: Cambridge University Press
Release Date: 2011-11-24
Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.
Model-making

Model-making: Materials and Methods focuses primarily on the wide variety of materials that can be employed to make models; those which have been favoured for a while and those which are relatively new. The book looks at how these materials behave and how to get the best out of them, then illustrates a range of relatively simple methods of building, shaping, modelling, surfacing and painting with them. Useful features of the book include: the different uses of models in various disciplines; the sequence of making; planning and construction, creating surfaces, painting and finishing; methods of casting, modelling and working with metals; step-by-step accounts of the making of specially selected examples; simple techniques without the need for expensive tools or workshop facilities; a 'Directory' of a full range of materials, together with an extensive list of suppliers. This book is intended for students of theatre production, art & architecture, animation and theatre/television set designers where accurate scale models are necessary, and is also of interest to anyone involved with the process of making forms in 3D and the challenge of making small-scale forms in general. Superbly illustrated with 185 colour photographs.
Handbook of Materials Modeling

Author: Sidney Yip
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-11-17
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.