Modeling Design And Fabrication Of Orthogonal And Psuedo Orthogonal Frequency Coded Saw Wireless Spread Spectrum Rfid Sensor Tags

Download Modeling Design And Fabrication Of Orthogonal And Psuedo Orthogonal Frequency Coded Saw Wireless Spread Spectrum Rfid Sensor Tags PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling Design And Fabrication Of Orthogonal And Psuedo Orthogonal Frequency Coded Saw Wireless Spread Spectrum Rfid Sensor Tags book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Modeling, Design and Fabrication of Orthogonal and Psuedo-orthogonal Frequency Coded SAW Wireless Spread Spectrum RFID Sensor Tags

Surface acoustic wave (SAW) sensors offer a wireless, passive sensor solution for use in numerous environments where wired sensing can be expensive and infeasible. Single carrier frequency SAW sensor embodiments such as delay lines, and resonators have been used in single sensor environments where sensor identification is not a necessity. The orthogonal frequency coded (OFC) SAW sensor tag embodiment developed at UCF uses a spread spectrum approach that allows interrogation in a multi-sensor environment and provides simultaneous sensing and sensor identification. The SAW device is encoded via proper design of multiple Bragg reflectors at differing frequencies. To enable accurate device design, a model to predict reflectivity over a wide range of electrode metallization ratios and metal thicknesses has been developed and implemented in a coupling of modes (COM) model. The high coupling coefficient, reflectivity and temperature coefficient of delay (TCD) of YZ LiNbO3 makes it an ideal substrate material for a temperature sensor, and the reflectivity model has been developed and verified for this substrate. A new concept of pseudo-orthogonal frequency coded (POFC) SAW sensor tags has been investigated, and with proper design, the POFC SAW reduces device insertion loss and fractional bandwidth compared to OFC. OFC and POFC sensor devices have been fabricated at 250 MHz and 915 MHz using fundamental operation, and 500 MHz and 1.6 GHz using second harmonic operation. Measured device results are shown and compared with the COM simulations using the enhanced reflectivity model. Additionally, the first OFC devices at 1.05 GHz were fabricated on 128[superscript o] YX LiNbO3 to explore feasibility of the material for future use in OFC sensor applications. Devices at 915 MHz have been fabricated on YZ LiNbO3 and integrated with an antenna, and have then been used in a transceiver system built by Mnemonics, Inc. to wirelessly sense temperature. The first experimental wireless POFC SAW sensor device results and predictions will be presented.
RFID Handbook

Author: Klaus Finkenzeller
language: en
Publisher: John Wiley & Sons
Release Date: 2010-11-04
This is the third revised edition of the established and trusted RFID Handbook; the most comprehensive introduction to radio frequency identification (RFID) available. This essential new edition contains information on electronic product code (EPC) and the EPC global network, and explains near-field communication (NFC) in depth. It includes revisions on chapters devoted to the physical principles of RFID systems and microprocessors, and supplies up-to-date details on relevant standards and regulations. Taking into account critical modern concerns, this handbook provides the latest information on: the use of RFID in ticketing and electronic passports; the security of RFID systems, explaining attacks on RFID systems and other security matters, such as transponder emulation and cloning, defence using cryptographic methods, and electronic article surveillance; frequency ranges and radio licensing regulations. The text explores schematic circuits of simple transponders and readers, and includes new material on active and passive transponders, ISO/IEC 18000 family, ISO/IEC 15691 and 15692. It also describes the technical limits of RFID systems. A unique resource offering a complete overview of the large and varied world of RFID, Klaus Finkenzeller’s volume is useful for end-users of the technology as well as practitioners in auto ID and IT designers of RFID products. Computer and electronics engineers in security system development, microchip designers, and materials handling specialists benefit from this book, as do automation, industrial and transport engineers. Clear and thorough explanations also make this an excellent introduction to the topic for graduate level students in electronics and industrial engineering design. Klaus Finkenzeller was awarded the Fraunhofer-Smart Card Prize 2008 for the second edition of this publication, which was celebrated for being an outstanding contribution to the smart card field.
RFID Systems

This book provides an insight into the 'hot' field of Radio Frequency Identification (RFID) Systems In this book, the authors provide an insight into the field of RFID systems with an emphasis on networking aspects and research challenges related to passive Ultra High Frequency (UHF) RFID systems. The book reviews various algorithms, protocols and design solutions that have been developed within the area, including most recent advances. In addition, authors cover a wide range of recognized problems in RFID industry, striking a balance between theoretical and practical coverage. Limitations of the technology and state-of-the-art solutions are identified and new research opportunities are addressed. Finally, the book is authored by experts and respected researchers in the field and every chapter is peer reviewed. Key Features: Provides the most comprehensive analysis of networking aspects of RFID systems, including tag identification protocols and reader anti-collision algorithms Covers in detail major research problems of passive UHF systems such as improving reading accuracy, reading range and throughput Analyzes other "hot topics" including localization of passive RFID tags, energy harvesting, simulator and emulator design, security and privacy Discusses design of tag antennas, tag and reader circuits for passive UHF RFID systems Presents EPCGlobal architecture framework, middleware and protocols Includes an accompanying website with PowerPoint slides and solutions to the problems http://www.site.uottawa.ca/~mbolic/RFIDBook/ This book will be an invaluable guide for researchers and graduate students in electrical engineering and computer science, and researchers and developers in telecommunication industry.