Modeling And Control Of Power Converters In Weak And Unbalanced Electric Grids

Download Modeling And Control Of Power Converters In Weak And Unbalanced Electric Grids PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling And Control Of Power Converters In Weak And Unbalanced Electric Grids book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Modeling and control of power converters in weak and unbalanced electric grids

Author: Just, Hendrik
language: en
Publisher: Universitätsverlag der TU Berlin
Release Date: 2021-11-25
Grid converters increasingly affect power system operation due to the increasing share of renewable energy sources and less conventional power plants. This shift in power generation leads to converter-dominated weak grids, which show critical stability phenomena but also enable converters to contribute to grid stability and voltage support. This thesis presents critical parts of converter controls and describes models to assess their characteristics. These models are used to derive design criteria and dedicated stability analysis methods for grid converter controls. Der steigende Anteil an erneuerbaren Energien in den Energieversorgungsnetzen führt zur Verdrängung konventioneller Kraftwerke. Diese Entwicklung lässt umrichterdominierte und schwache Netzabschnitte entstehen, die kritischen Stabilitätsmechanismen unterliegen, allerdings auch ermöglichen, dass Umrichter aktiv zur Netzstützung und Netzstabilität beitragen können. Die vorliegende Arbeit beschreibt kritische Regelungskomponenten der Umrichter und deren Modellierung. Auf Basis der Modelle werden Auslegungskriterien für die Regelungen abgeleitet und dedizierte Stabilitätsanalysemethoden präsentiert.
Modeling and Control of Sustainable Power Systems

Author: Lingfeng Wang
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-11-09
The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods.
Advanced Control of Grid-Connected High-Power Converters

The high-power grid-connected converters play a vital role in modern power system, realizing the conversion and transmission of electrical energy, and determining its safety, stability and efficiency. This book explores the advanced control strategies of high-power grid-connected converter to satisfy the high-power requirements in practical applications. Special attention is given to grid-connected converter modules in parallel operation to overcome the challenges of non-ideal power grid, power switches faults, and circulating current. Through the advanced control strategies presented in this book, the power capacity of grid-connected converter is flexibly increased with high-reliability and efficiency, thus expanding the application range of high-power converters in modern power system. To facilitate understanding, this book provides step-by-step model derivation and controller design for grid-connected converter. Meanwhile, it also provides the comprehensive simulation and experimental results to offer readers a deep insight into the control process of grid-connected converters. This book serves as a guide for electrical engineers and researchers involved in the development of high-power converters.