Model Reference Robust Tuning Of Pid Controllers

Download Model Reference Robust Tuning Of Pid Controllers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Model Reference Robust Tuning Of Pid Controllers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Model-Reference Robust Tuning of PID Controllers

This book presents a unified methodology for the design of PID controllers that encompasses the wide range of different dynamics to be found in industrial processes. This is extended to provide a coherent way of dealing with the tuning of PID controllers. The particular method at the core of the book is the so-called model-reference robust tuning (MoReRT), developed by the authors. MoReRT constitutes a novel and powerful way of thinking of a robust design and taking into account the usual design trade-offs encountered in any control design problem. The book starts by presenting the different two-degree-of-freedom PID control algorithm variations and their conversion relations as well as the indexes used for performance, robustness and fragility evaluation:the bases of the proposed model. Secondly, the MoReRT design methodology and normalized controlled process models and controllers used in the design are described in order to facilitate the formulation of the different design problems and subsequent derivation of tuning rules. Inlater chapters the application of MoReRT to over-damped, inverse-response, integrating and unstable processes is described. The book ends by presenting three possible extensions of the MoReRT methodology, thereby opening the door to new research developments. In this way, the book serves as a reference and source book for academic researchers who may also consider it as a stimulus for new ideas as well as for industrial practitioners and manufacturers of control systems who will find appropriate advanced solutions to many application problems.
PID Control System Design and Automatic Tuning using MATLAB/Simulink

Covers PID control systems from the very basics to the advanced topics This book covers the design, implementation and automatic tuning of PID control systems with operational constraints. It provides students, researchers, and industrial practitioners with everything they need to know about PID control systems—from classical tuning rules and model-based design to constraints, automatic tuning, cascade control, and gain scheduled control. PID Control System Design and Automatic Tuning using MATLAB/Simulink introduces PID control system structures, sensitivity analysis, PID control design, implementation with constraints, disturbance observer-based PID control, gain scheduled PID control systems, cascade PID control systems, PID control design for complex systems, automatic tuning and applications of PID control to unmanned aerial vehicles. It also presents resonant control systems relevant to many engineering applications. The implementation of PID control and resonant control highlights how to deal with operational constraints. Provides unique coverage of PID Control of unmanned aerial vehicles (UAVs), including mathematical models of multi-rotor UAVs, control strategies of UAVs, and automatic tuning of PID controllers for UAVs Provides detailed descriptions of automatic tuning of PID control systems, including relay feedback control systems, frequency response estimation, Monte-Carlo simulation studies, PID controller design using frequency domain information, and MATLAB/Simulink simulation and implementation programs for automatic tuning Includes 15 MATLAB/Simulink tutorials, in a step-by-step manner, to illustrate the design, simulation, implementation and automatic tuning of PID control systems Assists lecturers, teaching assistants, students, and other readers to learn PID control with constraints and apply the control theory to various areas. Accompanying website includes lecture slides and MATLAB/ Simulink programs PID Control System Design and Automatic Tuning using MATLAB/Simulink is intended for undergraduate electrical, chemical, mechanical, and aerospace engineering students, and will greatly benefit postgraduate students, researchers, and industrial personnel who work with control systems and their applications.
Industrial PID Controller Tuning

Industrial PID Controller Tuning presents a different view of the servo/regulator compromise that has been studied for a long time in industrial control research. Optimal tuning generally involves comparison of cost functions (e.g., a quadratic function of the error or a time-weighted absolute value of the error) but without taking advantage of available multi-objective optimization methods. The book does make use of multi-objective optimization to account for several sources of disturbance, applying them to a more realistic problem: how to select the tuning of a controller when both servo and regulator responses are important. The authors review the different deterministic multi-objective optimization methods. In order to ameliorate the consequences of the computational expense typically involved in their use—specifically the generation of multiple solutions among which the control engineer still has to choose—algorithms for two-degree-of-freedom PID control are implemented in MATLAB®. MATLAB code and a MATLAB-compatible program are provided for download and will help readers to adapt the ideas presented in the text for use in their own systems. Further practical guidance is offered by the inclusion of several examples of common industrial processes amenable to the use of the authors’ methods. Researchers interested in non-heuristic approaches to controller tuning or in decision-making after a Pareto set has been established and graduate students interested in beginning a career working with PID control and/or industrial controller tuning will find this book a valuable reference and source of ideas. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.