Model Predictive Control On Open Water Systems


Download Model Predictive Control On Open Water Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Model Predictive Control On Open Water Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Model Predictive Control on Open Water Systems


Model Predictive Control on Open Water Systems

Author: Peter-Jules van Overloop

language: en

Publisher: IOS Press

Release Date: 2006


DOWNLOAD





In the research Model Predictive Control on Open Water Systems', the relatively new control methodology Model Predictive Control is configured for application of water quantity control on open water systems, especially on irrigation canals and large drainage systems. The methodology applies an internal model of the open water system, by which optimal control actions are calculated over a prediction horizon. As internal model, two simplified models are used, the Integrator Delay model and the Saint Venant model. Kalman filtering is applied to initialize the internal models. The optimization uses an objective function in which conflicting objectives can be weighed. In most of the cases, these conflicting objectives are keeping the water levels at different locations in the water system within a range around setpoint and executing this by using as little control effort or energy as possible.

Transport of Water versus Transport over Water


Transport of Water versus Transport over Water

Author: Carlos Ocampo-Martinez

language: en

Publisher: Springer

Release Date: 2015-06-03


DOWNLOAD





This book aims at stimulating discussion between researchers working on state of the art approaches for operational control and design of transport of water on the one hand and researchers working on state of the art approaches for transport over water on the other hand. The main contribution of the book as a whole is to present novel perspectives ultimately leading to the management of an envisioned unified management framework taking the recent advances from both worlds as a baseline. The book is intended to be a reference for control-oriented engineers who manage water systems with either or both purposes in mind (transport of water, transport of goods over water). It highlights the possible twofold nature of water projects, where water either acts as primary object of study or as a means. The book is dedicated to comparing and relating to one another different strategies for (operational) management and control of different but strongly related systems in the framework of the water. In that sense, the book presents different approaches treating both the transport of water and transport over water. It compares the different approaches within the same field, highlighting their distinguishing features and advantages according to selected qualitative indices, and demonstrates the interaction and cross-relations between both fields. It will also help to determine the gaps and common points for both fields towards the design of such a unifying framework, which is lacking in the literature. Additionally, the book looks at case studies where the design of modeling/control strategies of either transport of water or transport over water have been proposed, discussed or simulated.

Real-time Monitoring and Operational Control of Drinking-Water Systems


Real-time Monitoring and Operational Control of Drinking-Water Systems

Author: Vicenç Puig

language: en

Publisher: Springer

Release Date: 2017-05-18


DOWNLOAD





This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves— and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;• decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection and diagnosis techniques and using information from hundreds of flow, pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators;• consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns, providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level. Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.