Model Driven Engineering Of Adaptation Engines For Self Adaptive Software


Download Model Driven Engineering Of Adaptation Engines For Self Adaptive Software PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Model Driven Engineering Of Adaptation Engines For Self Adaptive Software book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Model-driven engineering of adaptation engines for self-adaptive software


Model-driven engineering of adaptation engines for self-adaptive software

Author: Thomas Vogel

language: en

Publisher: Universitätsverlag Potsdam

Release Date: 2013


DOWNLOAD





The development of self-adaptive software requires the engineering of an adaptation engine that controls and adapts the underlying adaptable software by means of feedback loops. The adaptation engine often describes the adaptation by using runtime models representing relevant aspects of the adaptable software and particular activities such as analysis and planning that operate on these runtime models. To systematically address the interplay between runtime models and adaptation activities in adaptation engines, runtime megamodels have been proposed for self-adaptive software. A runtime megamodel is a specific runtime model whose elements are runtime models and adaptation activities. Thus, a megamodel captures the interplay between multiple models and between models and activities as well as the activation of the activities. In this article, we go one step further and present a modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that considerably eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular for feedback loops. Megamodels are kept explicit and alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops, their runtime models, and adaptation activities explicit at a higher level of abstraction. Moreover, it enables complex solutions where multiple feedback loops interact or even operate on top of each other. Finally, it leverages the co-existence of self-adaptation and off-line adaptation for evolution.

Model-driven Engineering of Self-adaptive Software


Model-driven Engineering of Self-adaptive Software

Author: Thomas Vogel

language: en

Publisher:

Release Date: 2018


DOWNLOAD





The development of self-adaptive software requires the engineering of an adaptation engine that controls the underlying adaptable software by a feedback loop. State-of-the-art approaches prescribe the feedback loop in terms of numbers, how the activities (e.g., monitor, analyze, plan, and execute (MAPE)) and the knowledge are structured to a feedback loop, and the type of knowledge. Moreover, the feedback loop is usually hidden in the implementation or framework and therefore not visible in the architectural design. Additionally, an adaptation engine often employs runtime models that either represent the adaptable software or capture strategic knowledge such as reconfiguration strategies. State-of-the-art approaches do not systematically address the interplay of such runtime models, which would otherwise allow developers to freely design the entire feedback loop. This thesis presents ExecUtable RuntimE MegAmodels (EUREMA), an integrated model-driven engineering (MDE) solution that rigorously uses models for engineering feedback ...

Formal Methods for Model-Driven Engineering


Formal Methods for Model-Driven Engineering

Author: Marco Bernardo

language: en

Publisher: Springer

Release Date: 2012-06-26


DOWNLOAD





This book presents 11 tutorial lectures by leading researchers given at the 12th edition of the International School on Formal Methods for the Design of Computer, Communication and Software Systems, SFM 2012, held in Bertinoro, Italy, in June 2012. SFM 2012 was devoted to model-driven engineering and covered several topics including modeling languages; model transformations, functional and performance modeling and analysis; and model evolution management.