Mobility Patterns Big Data And Transport Analytics


Download Mobility Patterns Big Data And Transport Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mobility Patterns Big Data And Transport Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mobility Patterns, Big Data and Transport Analytics


Mobility Patterns, Big Data and Transport Analytics

Author: Constantinos Antoniou

language: en

Publisher: Elsevier

Release Date: 2018-11-27


DOWNLOAD





Mobility Patterns, Big Data and Transport Analytics provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing and controlling mobility patterns - a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications and concepts in mobility analysis and transportation systems. Users will find a detailed, mobility 'structural' analysis and a look at the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications and transportation systems analysis that are related to complex processes and phenomena. This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data's impact on mobility and an introduction to the tools necessary to apply new techniques. The book covers in detail, mobility 'structural' analysis (and its dynamics), the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications, and transportation systems analysis related to complex processes and phenomena. The book bridges the gap between big data, data science, and Transportation Systems Analysis with a study of big data's impact on mobility, and an introduction to the tools necessary to apply new techniques. - Guides readers through the paradigm-shifting opportunities and challenges of handling Big Data in transportation modeling and analytics - Covers current analytical innovations focused on capturing, predicting, visualizing, and controlling mobility patterns, while discussing future trends - Delivers an introduction to transportation-related information advances, providing a benchmark reference by world-leading experts in the field - Captures and manages mobility patterns, covering multiple purposes and alternative transport modes, in a multi-disciplinary approach - Companion website features videos showing the analyses performed, as well as test codes and data-sets, allowing readers to recreate the presented analyses and apply the highlighted techniques to their own data

Demand for Emerging Transportation Systems


Demand for Emerging Transportation Systems

Author: Constantinos Antoniou

language: en

Publisher: Elsevier

Release Date: 2019-12-02


DOWNLOAD





Demand for Emerging Transportation Systems: Modeling Adoption, Satisfaction, and Mobility Patterns comprehensively examines the concepts and factors affecting user quality-of-service satisfaction. The book provides an introduction to the latest trends in transportation, followed by a critical review of factors affecting traditional and emerging transportation system adoption rates and user retention. This collection includes a rigorous introduction to the tools necessary for analyzing these factors, as well as Big Data collection methodologies, such as smartphone and social media analysis. Researchers will be guided through the nuances of transport and mobility services adoption, closing with an outlook of, and recommendations for, future research on the topic. This resource will appeal to practitioners and graduate students. - Examines the dynamics affecting adoption rates for public transportation, vehicle-sharing, ridesharing systems and autonomous vehicles - Covers the rationale behind travelers' continuous use of mobility services and their satisfaction and development - Includes case studies, featuring mobility stats and contributions from around the world

Transportation Analytics in the Era of Big Data


Transportation Analytics in the Era of Big Data

Author: Satish V. Ukkusuri

language: en

Publisher: Springer

Release Date: 2018-07-28


DOWNLOAD





This book presents papers based on the presentations and discussions at the international workshop on Big Data Smart Transportation Analytics held July 16 and 17, 2016 at Tongji University in Shanghai and chaired by Professors Ukkusuri and Yang. The book is intended to explore a multidisciplinary perspective to big data science in urban transportation, motivated by three critical observations: The rapid advances in the observability of assets, platforms for matching supply and demand, thereby allowing sharing networks previously unimaginable. The nearly universal agreement that data from multiple sources, such as cell phones, social media, taxis and transit systems can allow an understanding of infrastructure systems that is critically important to both quality of life and successful economic competition at the global, national, regional, and local levels. There is presently a lack of unifying principles and methodologies that approach big data urban systems. The workshop brought together varied perspectives from engineering, computational scientists, state and central government, social scientists, physicists, and network science experts to develop a unifying set of research challenges and methodologies that are likely to impact infrastructure systems with a particular focus on transportation issues. The book deals with the emerging topic of data science for cities, a central topic in the last five years that is expected to become critical in academia, industry, and the government in the future. There is currently limited literature for researchers to know the opportunities and state of the art in this emerging area, so this book fills a gap by synthesizing the state of the art from various scholars and help identify new research directions for further study.