Minkowski Geometry Pdf

Download Minkowski Geometry Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Minkowski Geometry Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Minkowski Geometry

Author: Anthony C. Thompson
language: en
Publisher: Cambridge University Press
Release Date: 1996-06-28
Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and hyperbolic geometry (and from the Minkowskian geometry of spacetime). Here the linear structure is the same as the Euclidean one but distance is not "uniform" in all directions. Instead of the usual sphere in Euclidean space, the unit ball is a general symmetric convex set. Therefore, although the parallel axiom is valid, Pythagoras' theorem is not. This book begins by presenting the topological properties of Minkowski spaces, including the existence and essential uniqueness of Haar measure, followed by the fundamental metric properties - the group of isometries, the existence of certain bases and the existence of the Lowner ellipsoid. This is followed by characterizations of Euclidean space among normed spaces and a full treatment of two-dimensional spaces. The three central chapters present the theory of area and volume in normed spaces. The author describes the fascinating geometric interplay among the isoperimetrix (the convex body which solves the isoperimetric problem), the unit ball and their duals, and the ways in which various roles of the ball in Euclidean space are divided among them. The next chapter deals with trigonometry in Minkowski spaces and the last one takes a brief look at a number of numerical parameters associated with a normed space, including J. J. Schaffer's ideas on the intrinsic geometry of the unit sphere. Each chapter ends with a section of historical notes and the book ends with a list of 50 unsolved problems. Minkowski Geometry will appeal to students and researchers interested in geometry, convexity theory and functional analysis.
The Geometry of Minkowski Spacetime

Author: Gregory L. Naber
language: en
Publisher: Courier Corporation
Release Date: 2003-01-01
This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
Geometrical Physics in Minkowski Spacetime

From the reviews: "This attractive book provides an account of the theory of special relativity from a geometrical viewpoint, explaining the unification and insights that are given by such a treatment. [...] Can be read with profit by all who have taken a first course in relativity physics." ASLIB Book Guide