Mining Text Data


Download Mining Text Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mining Text Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mining Text Data


Mining Text Data

Author: Charu C. Aggarwal

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-02-03


DOWNLOAD





Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.

Mining Text Data


Mining Text Data

Author:

language: en

Publisher:

Release Date: 2012-02-04


DOWNLOAD





Text Mining for Information Professionals


Text Mining for Information Professionals

Author: Manika Lamba

language: en

Publisher: Springer Nature

Release Date: 2022-04-21


DOWNLOAD





This book focuses on a basic theoretical framework dealing with the problems, solutions, and applications of text mining and its various facets in a very practical form of case studies, use cases, and stories. The book contains 11 chapters with 14 case studies showing 8 different text mining and visualization approaches, and 17 stories. In addition, both a website and a Github account are also maintained for the book. They contain the code, data, and notebooks for the case studies; a summary of all the stories shared by the librarians/faculty; and hyperlinks to open an interactive virtual RStudio/Jupyter Notebook environment. The interactive virtual environment runs case studies based on the R programming language for hands-on practice in the cloud without installing any software. From understanding different types and forms of data to case studies showing the application of each text mining approaches on data retrieved from various resources, this book is a must-read for all library professionals interested in text mining and its application in libraries. Additionally, this book will also be helpful to archivists, digital curators, or any other humanities and social science professionals who want to understand the basic theory behind text data, text mining, and various tools and techniques available to solve and visualize their research problems.