Microstructure Sensitive Design For Performance Optimization


Download Microstructure Sensitive Design For Performance Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Microstructure Sensitive Design For Performance Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Microstructure Sensitive Design for Performance Optimization


Microstructure Sensitive Design for Performance Optimization

Author: Brent L. Adams

language: en

Publisher: Butterworth-Heinemann

Release Date: 2012-12-31


DOWNLOAD





The accelerating rate at which new materials are appearing, and transforming the engineering world, only serves to emphasize the vast potential for novel material structure and related performance. Microstructure Sensitive Design for Performance Optimization (MSDPO) embodies a new methodology for systematic design of material microstructure to meet the requirements of design in optimal ways. Intended for materials engineers and researchers in industry, government and academia as well as upper level undergraduate and graduate students studying material science and engineering, MSDPO provides a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the field of engineering design. - Presents new methods and techniques for analysis and optimum design of materials at the microstructure level - Authors' methodology introduces spectral approaches not available in previous texts, such as the incorporation of crystallographic orientation as a variable in the design of engineered components with targeted elastic properties - Numerous illustrations and examples throughout the text help readers grasp the concepts

Metallurgy and Design of Alloys with Hierarchical Microstructures


Metallurgy and Design of Alloys with Hierarchical Microstructures

Author: Krishnan K. Sankaran

language: en

Publisher: Elsevier

Release Date: 2017-06-14


DOWNLOAD





Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. - Discusses the science behind the properties and performance of advanced metallic materials - Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures - Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work

Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes


Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes

Author: Anand Balu Nellippallil

language: en

Publisher: Springer Nature

Release Date: 2020-06-13


DOWNLOAD





This book explores systems-based, co-design, introducing a “Decision-Based, Co-Design” (DBCD) approach for the co-design of materials, products, and processes. In recent years there have been significant advances in modeling and simulation of material behavior, from the smallest atomic scale to the macro scale. However, the uncertainties associated with these approaches and models across different scales need to be addressed to enable decision-making resulting in designs that are robust, that is, relatively insensitive to uncertainties. An approach that facilitates co-design is needed across material, product design and manufacturing processes. This book describes a cloud-based platform to support decisions in the design of engineered systems (CB-PDSIDES), which feature an architecture that promotes co-design through the servitization of decision-making, knowledge capture and use templates that allow previous solutions to be reused. Placing the platform in the cloud aids mass collaboration and open innovation. A valuable reference resource reference on all areas related to the design of materials, products and processes, the book appeals to material scientists, design engineers and all those involved in the emerging interdisciplinary field of integrated computational materials engineering (ICME).