Microscopic Techniques For The Non Expert

Download Microscopic Techniques For The Non Expert PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Microscopic Techniques For The Non Expert book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Microscopic Techniques for the Non-Expert

Author: Sathish-Kumar Kamaraj
language: en
Publisher: Springer Nature
Release Date: 2022-06-27
This book covers fundamental microscopic techniques for Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and other microscopic tools. It provides step-by-step instructions and explanations of the basic fundamental concepts and mechanisms and guides the reader on resolving queries related to taking and analyzing microscopy images. The latest advancements and developments in microscopic equipment are described. Theoretical background on microscopy is also provided to enhance the reader’s understanding of microscopy techniques and tools. Microscopic Techniques for the Non-Expert is an ideal book for undergraduate and postgraduate students, as well as researchers with a background in environmental science, materials science, biomedicine, engineering, or bio-nanotechnology.
A Practical Guide to Optical Microscopy

Choice Recommended Title, March 2020 Optical microscopy is used in a vast range of applications ranging from materials engineering to in vivo observations and clinical diagnosis, and thanks to the latest advances in technology, there has been a rapid growth in the number of methods available. This book is aimed at providing users with a practical guide to help them select, and then use, the most suitable method for their application. It explores the principles behind the different forms of optical microscopy, without the use of complex maths, to provide an understanding to help the reader utilise a specific method and then interpret the results. Detailed physics is provided in boxed sections, which can be bypassed by the non-specialist. It is an invaluable tool for use within research groups and laboratories in the life and physical sciences, acting as a first source for practical information to guide less experienced users (or those new to a particular methodology) on the range of techniques available. Features: The first book to cover all current optical microscopy methods for practical applications Written to be understood by a non-optical expert with inserts to provide the physical science background Brings together conventional widefield and confocal microscopy, with advanced non-linear and super resolution methods, in one book To learn more about the author please visit here.
C. elegans

Caenorhabditis Elegans has been a popular model organism for biological research for over thirty years and has been used to investigate many aspects of animal development, for example apoptosis, the Hox genes, signal transduction pathways, and the development of the nervous system. It has recently taken on new importance with the publication of the entire genome sequence in 1998. The first chapter gives all the basic information on C. elegans required to use it: it's natural history, anatomy, life cycle, development, and evolution. Information on how to obtain, grow, and maintain C. elegans for use as a model system is given in Chapter 4. Chapters 2 and 3 describe the genome project and show how to use genome sequence information by searching the database for homologues using different search methods and then how to analyse the search data. The next chapter gives the essential practical details of transformation and common uses for the technique. Chapter 6 covers reverse genetics and describes strategies for gene inactivation that are known to work in C elegans: epigenetic inactivation and mutational germ line inactivation. Chapter 7 is designed to help the user analyse phenotype by microscopy and includes Normaski, fluorescence, 4-dimensional, and electron microscopy. Techniques for studying the neurobiology of C. elegans are given in chapter 8. Chapter 9 describes the three commonly used approaches for studying gene expression and Chapter 10 deals with the common methods of molecular biology essential for gene characterization. C. elegans is not the ideal organism for biochemical studies, but chapter 11 describes several procedures for producing biochemically useful quantities of pure tissues. The final chapter is about conventional genetics and details the standard procedures for selfing and crossing; mutagenesis and mutant screening; characterization of mutants; gene mapping; temperature-shift experiments and mosaic analysis. Caenorhabditis Elegans: A Practical Approach will therefore provide all the background information necessary for use of C. elegans as a model system.