Microscopic And Macroscopic Simulation Techniques Kharagpur Lectures

Download Microscopic And Macroscopic Simulation Techniques Kharagpur Lectures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Microscopic And Macroscopic Simulation Techniques Kharagpur Lectures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Microscopic And Macroscopic Simulation Techniques: Kharagpur Lectures

Author: William Graham Hoover
language: en
Publisher: World Scientific
Release Date: 2018-03-13
This book aims to provide an example-based education in numerical methods for atomistic and continuum simulations of systems at and away from equilibrium. The focus is on nonequilibrium systems, stressing the use of tools from dynamical systems theory for their analysis. Lyapunov instability and fractal dimensionality are introduced and algorithms for their analysis are detailed. The book is intended to be self-contained and accessible to students who are comfortable with calculus and differential equations.The wide range of topics covered will provide students, researchers and academics with effective tools for formulating and solving interesting problems, both atomistic and continuum. The detailed description of the use of thermostats to control nonequilibrium systems will help readers in writing their own programs rather than being saddled with packaged software.
Computer Simulation in Materials Science

This volume collects the contributions to the NATO Advanced Study Institute (ASI); "Computer Simulation in Materials Science -NanolMesolMacroscopic Space and Time Scales", held on lIe d'OIeron (France) June 6-16, 1995.1his event was intended to present the state of the art in simulation techniques in Materials Science. For decades to come the limits of computing power will not allow for atomistic simulations of macroscopic specimens. Simulations can only be performed on various scales (nano, meso, micro, macro) with the constitutive input provided by simulations (or data) on the next smaller scale. The resulting hierarchy has been the main topic of many of lectures and seminars. Necessarily, special emphasis was placed on mesoscopic simulations bridging the gaps between nano (atomic) and micro space and time scales. During the ASI, lecturers and participants did not only consider fundamental problems, but also applications. Papers on the evolution of morphological patterns in phase transformations and plastic deformation, irradiation effects, mass transport and mechanical properties of materials in general, highlighted what has already been achieved. It was concluded that computer simulations must be based on realistic and efficient models, the fundamental equations controlling the dynamical evolution of microstructures, stochastic field kinetic models being a case in point.