Microscope Functions

Download Microscope Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Microscope Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Microscope Image Processing

Digital image processing, an integral part of microscopy, is increasingly important to the fields of medicine and scientific research. This book provides a unique one-stop reference on the theory, technique, and applications of this technology. Written by leading experts in the field, this book presents a unique practical perspective of state-of-the-art microscope image processing and the development of specialized algorithms. It contains in-depth analysis of methods coupled with the results of specific real-world experiments. Microscope Image Processing covers image digitization and display, object measurement and classification, autofocusing, and structured illumination. Key Features: - Detailed descriptions of many leading-edge methods and algorithms - In-depth analysis of the method and experimental results, taken from real-life examples - Emphasis on computational and algorithmic aspects of microscope image processing - Advanced material on geometric, morphological, and wavelet image processing, fluorescence, three-dimensional and time-lapse microscopy, microscope image enhancement, MultiSpectral imaging, and image data management This book is of interest to all scientists, engineers, clinicians, post-graduate fellows, and graduate students working in the fields of biology, medicine, chemistry, pharmacology, and other related fields. Anyone who uses microscopes in their work and needs to understand the methodologies and capabilities of the latest digital image processing techniques will find this book invaluable. - Presents a unique practical perspective of state-of-the-art microcope image processing and the development of specialized algorithms - Each chapter includes in-depth analysis of methods coupled with the results of specific real-world experiments - Co-edited by Kenneth R. Castleman, world-renowned pioneer in digital image processing and author of two seminal textbooks on the subject
Science of Microscopy

Author: P.W. Hawkes
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-08-29
This fully corrected second impression of the classic 2006 text on microscopy runs to more than 1,000 pages and covers up-to-the-minute developments in the field. The two-volume work brings together a slew of experts who present comprehensive reviews of all the latest instruments and new versions of the older ones, as well as their associated operational techniques. The chapters draw attention to their principal areas of application. A huge range of subjects are benefiting from these new tools, including semiconductor physics, medicine, molecular biology, the nanoworld in general, magnetism, and ferroelectricity. This fascinating book will be an indispensable guide for a wide range of scientists in university laboratories as well as engineers and scientists in industrial R&D departments.
Computer Processing of Electron Microscope Images

Author: P. W. Hawkes
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Towards the end of the 1960s, a number of quite different circumstances combined to launch a period of intense activity in the digital processing of electron micro graphs. First, many years of work on correcting the resolution-limiting aberrations of electron microscope objectives had shown that these optical impediments to very high resolution could indeed be overcome, but only at the cost of immense exper imental difficulty; thanks largely to the theoretical work of K. -J. Hanszen and his colleagues and to the experimental work of F. Thon, the notions of transfer func tions were beginning to supplant or complement the concepts of geometrical optics in electron optical thinking; and finally, large fast computers, capable of manipu lating big image matrices in a reasonable time, were widely accessible. Thus the idea that recorded electron microscope images could be improved in some way or rendered more informative by subsequent computer processing gradually gained ground. At first, most effort was concentrated on three-dimensional reconstruction, particu larly of specimens with natural symmetry that could be exploited, and on linear operations on weakly scattering specimens (Chap. l). In 1973, however, R. W. Gerchberg and W. O. Saxton described an iterative algorithm that in principle yielded the phase and amplitude of the electron wave emerging from a strongly scattering speci men.