Microjoining And Nanojoining


Download Microjoining And Nanojoining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Microjoining And Nanojoining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Microjoining and Nanojoining


Microjoining and Nanojoining

Author: Y N Zhou

language: en

Publisher: Elsevier

Release Date: 2008-03-27


DOWNLOAD





Many important advances in technology have been associated with nanotechnology and the miniaturization of components, devices and systems. Microjoining has been closely associated with the evolution of microelectronic packaging, but actually covers a much broader area, and is essential for manufacturing many electronic, precision and medical products.Part one reviews the basics of microjoining, including solid-state bonding and fusion microwelding. Part two covers microjoining and nanojoining processes, such as bonding mechanisms and metallurgy, process development and optimization, thermal stresses and distortion, positioning and fixturing, sensing, and numerical modelling. Part three discusses microjoining of materials such as plastics, ceramics, metals and advanced materials such as shape memory alloys and nanomaterials. The book also discusses applications of microjoining such as joining superconductors, the manufacture of medical devices and the sealing of solid oxide fuel cells.This book provides a comprehensive overview of the fundamental aspects of microjoining processes and techniques. It is a valuable reference for production engineers, designers and researchers using or studying microjoining technologies in such industries as microelectronics and biomedical engineering. - Reviews the basics of nanojoining including solid-state bonding and fusion microwelding - Covers microjoining and nanojoining processes such as bonding mechanisms and metallurgy, sensing and numerical modelling - Examines applications of microjoining such as the manufacturing of medical devices, and the sealing of solid oxide fuel cells

Advanced Piezoelectric Materials


Advanced Piezoelectric Materials

Author: Kenji Uchino

language: en

Publisher: Elsevier

Release Date: 2010-09-27


DOWNLOAD





Piezoelectric materials produce electric charges on their surfaces as a consequence of applying mechanical stress. They are used in the fabrication of a growing range of devices such as transducers (used, for example, in ultrasound scanning), actuators (deployed in such areas as vibration suppression in optical and microelectronic engineering), pressure sensor devices (such as gyroscopes) and increasingly as a way of producing energy. Their versatility has led to a wealth of research to broaden the range of piezoelectric materials and their potential uses. Advanced piezoelectric materials: science and technology provides a comprehensive review of these new materials, their properties, methods of manufacture and applications.After an introductory overview of the development of piezoelectric materials, Part one reviews the various types of piezoelectric material, ranging from lead zirconate titanate (PZT) piezo-ceramics, relaxor ferroelectric ceramics, lead-free piezo-ceramics, quartz-based piezoelectric materials, the use of lithium niobate and lithium in piezoelectrics, single crystal piezoelectric materials, electroactive polymers (EAP) and piezoelectric composite materials. Part two discusses how to design and fabricate piezo-materials with chapters on piezo-ceramics, single crystal preparation techniques, thin film technologies, aerosol techniques and manufacturing technologies for piezoelectric transducers. The final part of the book looks at applications such as high-power piezoelectric materials and actuators as well as the performance of piezoelectric materials under stress.With its distinguished editor and international team of expert contributors Advanced piezoelectric materials: science and technology is a standard reference for all those researching piezoelectric materials and using them to develop new devices in such areas as microelectronics, optical, sound, structural and biomedical engineering. - Provides a comprehensive review of the new materials, their properties and methods of manufacture and application - Explores the development of piezoelectric materials from the historical background to the present status - Features an overview of manufacturing methods for piezoelectric ceramic materials including design considerations

Solid-State Hydrogen Storage


Solid-State Hydrogen Storage

Author: Gavin Walker

language: en

Publisher: Elsevier

Release Date: 2008-09-30


DOWNLOAD





Hydrogen fuel cells are emerging as a major alternative energy source in transportation and other applications. Central to the development of the hydrogen economy is safe, efficient and viable storage of hydrogen. Solid-state hydrogen storage: Materials and chemistry reviews the latest developments in solid-state hydrogen storage.Part one discusses hydrogen storage technologies, hydrogen futures, hydrogen containment materials and solid-state hydrogen storage system design. Part two reviews the analysis of hydrogen interactions including structural characterisation of hydride materials, neutron scattering techniques, reliably measuring hydrogen uptake in storage materials and modelling of carbon-based materials for hydrogen storage. Part three analyses physically-bound hydrogen storage with chapters on zeolites, carbon nanostructures and metal-organic framework materials. Part four examines chemically-bound hydrogen storage including intermetallics, magnesium hydride, alanates, borohydrides, imides and amides, multicomponent hydrogen storage systems, organic liquid carriers, indirect hydrogen storage in metal ammines and technological challenges in hydrogen storage.With its distinguished editor and international team of contributors, Solid-state hydrogen storage: Materials and chemistry is a standard reference for researchers and professionals in the field of renewable energy, hydrogen fuel cells and hydrogen storage. - Assesses hydrogen fuel cells as a major alternative energy source - Discusses hydrogen storage technologies and solid-state hydrogen storage system design - Explores the analysis of hydrogen interactions including reliably measuring hydrogen uptake in storage materials