Methods Of Solving Sequence And Series Problems

Download Methods Of Solving Sequence And Series Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods Of Solving Sequence And Series Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Methods of Solving Sequence and Series Problems

This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions, Methods of Solving Sequences and Series Problems is an ideal resource for those learning calculus, preparing for mathematics competitions, or just looking for a worthwhile challenge. It can also be used by faculty who are looking for interesting and insightful problems that are not commonly found in other textbooks.
Methods of Solving Number Theory Problems

Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores therepresentations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.
Theory of Infinite Sequences and Series

Author: Ludmila Bourchtein
language: en
Publisher: Springer Nature
Release Date: 2021-11-13
This textbook covers the majority of traditional topics of infinite sequences and series, starting from the very beginning – the definition and elementary properties of sequences of numbers, and ending with advanced results of uniform convergence and power series. The text is aimed at university students specializing in mathematics and natural sciences, and at all the readers interested in infinite sequences and series. It is designed for the reader who has a good working knowledge of calculus. No additional prior knowledge is required. The text is divided into five chapters, which can be grouped into two parts: the first two chapters are concerned with the sequences and series of numbers, while the remaining three chapters are devoted to the sequences and series of functions, including the power series. Within each major topic, the exposition is inductive and starts with rather simple definitions and/or examples, becoming more compressed and sophisticated as the course progresses. Each key notion and result is illustrated with examples explained in detail. Some more complicated topics and results are marked as complements and can be omitted on a first reading. The text includes a large number of problems and exercises, making it suitable for both classroom use and self-study. Many standard exercises are included in each section to develop basic techniques and test the understanding of key concepts. Other problems are more theoretically oriented and illustrate more intricate points of the theory, or provide counterexamples to false propositions which seem to be natural at first glance. Solutions to additional problems proposed at the end of each chapter are provided as an electronic supplement to this book.