Methods Of Qualitative Theory In Nonlinear Dynamics Basic Concepts


Download Methods Of Qualitative Theory In Nonlinear Dynamics Basic Concepts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods Of Qualitative Theory In Nonlinear Dynamics Basic Concepts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Methods of Qualitative Theory in Nonlinear Dynamics


Methods of Qualitative Theory in Nonlinear Dynamics

Author: Leonid P. Shilnikov

language: en

Publisher: World Scientific

Release Date: 1998


DOWNLOAD





Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced studentsof nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.

Methods of Qualitative Theory in Nonlinear Dynamics


Methods of Qualitative Theory in Nonlinear Dynamics

Author: L. P. Shil'nikov

language: en

Publisher: World Scientific

Release Date: 2001


DOWNLOAD





Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book has been written to serve that unfulfilled need. Following the footsteps of Poincar(r), and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in the book have been developed only recently and have not yet appeared in textbook form. In keeping with the self-contained nature of the book, all the topics are developed with introductory background and complete mathematical rigor. Generously illustrated and written at a high level of exposition, this invaluable book will appeal to both the beginner and the advanced student of nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject. Sample Chapter(s). Introduction to Part II (124 KB). Chapter 7.1: Rough systems on a plane. Andronov-Pontryagin theorem (218 KB). Chapter 7.2: The set of center motions (158 KB). Chapter 7.3: General classification of center motions (155 KB). Chapter 7.4: Remarks on roughness of high-order dynamical systems (136 KB). Chapter 7.5: Morse-Smale systems (435 KB). Chapter 7.6: Some properties of Morse-Smale systems (211 KB). Contents: Structurally Stable Systems; Bifurcations of Dynamical Systems; The Behavior of Dynamical Systems on Stability Boundaries of Equilibrium States; The Behavior of Dynamical Systems on Stability Boundaries of Periodic Trajectories; Local Bifurcations on the Route Over Stability Boundaries; Global Bifurcations at the Disappearance of a Saddle-Node Equilibrium States and Periodic Orbits; Bifurcations of Homoclinic Loops of Saddle Equilibrium States; Safe and Dangerous Boundaries. Readership: Engineers, students, mathematicians and researchers in nonlinear dynamics and dynamical systems.