Methods Of Graph Decompositions

Download Methods Of Graph Decompositions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods Of Graph Decompositions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Methods of Graph Decompositions

Author: Vadim Zverovich
language: en
Publisher: Oxford University Press
Release Date: 2024-08-06
In general terms, a graph decomposition is a partition of a graph into parts satisfying some special conditions. Methods of Graph Decompositions discusses some state-of-the-art decomposition methods of graph theory, which are highly instrumental when dealing with a number of fundamental concepts such as unigraphs, isomorphism, reconstruction conjectures, k-dimensional graphs, degree sequences, line graphs and line hypergraphs. The first part of the book explores the algebraic theory of graph decomposition, whose major idea is to define a binary operation that turns the set of graphs or objects derived from graphs into an algebraic semigroup. If an operation and a class of graphs are appropriately chosen, then, just as for integers, each graph has a unique factorization (or canonical decomposition) into a product of prime factors. The unique factorization property makes this type of decomposition especially efficient for problems associated with graph isomorphism, and several such examples are described in the book. Another topic is devoted to Krausz-type decompositions, that is, special coverings of graphs by cliques that are directly associated with representation of graphs as line graphs of hypergraphs. The book discusses various algorithmic and structural results associated with the existence, properties and applications of such decompositions. In particular, it demonstrates how Krausz-type decompositions are directly related to topological dimension, information complexity and self-similarity of graphs, thus allowing to establish links between combinatorics, general topology, information theory and studies of complex systems. The above topics are united by the role played in their development by Professor Regina Tyshkevich, and the book is a tribute to her memory. The book will be ideal for researchers, engineers and specialists, who are interested in fundamental problems of graph theory and proof techniques to tackle them.
Graph Decompositions

Graph Decompositions is the first book on a topic that belongs mainly to infinite graph theory. It offers a complete account of the theory of simplicial decompositions of graphs, from its origins in the 1930s right up to present-day research. In addition to being one of the most important tools in infinite graph theory, simplicial decompositions may be seen as a model for any kind of structural graph decomposition. The currently topical tree-decompositions, for example, have their origin in simplicial decompositions. The text is centred around a few guiding problems and concepts, such as the existence and the uniqueness problem of simplicial decompositions into primes, or the concept of excluded minors as a means of identifying a desired structure.It attempts to give as authentic a picture as possible of research in progress. To this end, it includes discussions of examples, proof strategies on the formation of new concepts, as well as numerous exercises and open problems. Graph Decompositions should prove attractive to any graph theorist or other mathematician interested in a new area of research, as well as to the advanced student looking for a lively and inspiring account of how such research evolves.
Domain Decomposition Methods in Science and Engineering XXV

These are the proceedings of the 25th International Conference on Domain Decomposition Methods in Science and Engineering, which was held in St. John's, Newfoundland, Canada in July 2018. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2018.