Methods And Applications Of White Noise Analysis In Interdisciplinary Sciences


Download Methods And Applications Of White Noise Analysis In Interdisciplinary Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods And Applications Of White Noise Analysis In Interdisciplinary Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Methods And Applications Of White Noise Analysis In Interdisciplinary Sciences


Methods And Applications Of White Noise Analysis In Interdisciplinary Sciences

Author: Christopher C Bernido

language: en

Publisher: World Scientific

Release Date: 2014-11-27


DOWNLOAD





Analysis, modeling, and simulation for better understanding of diverse complex natural and social phenomena often require powerful tools and analytical methods. Tractable approaches, however, can be developed with mathematics beyond the common toolbox. This book presents the white noise stochastic calculus, originated by T Hida, as a novel and powerful tool in investigating physical and social systems. The calculus, when combined with Feynman's summation-over-all-histories, has opened new avenues for resolving cross-disciplinary problems. Applications to real-world complex phenomena are further enhanced by parametrizing non-Markovian evolution of a system with various types of memory functions. This book presents general methods and applications to problems encountered in complex systems, scaling in industry, neuroscience, polymer physics, biophysics, time series analysis, relativistic and nonrelativistic quantum systems.

White Noise Analysis And Quantum Information


White Noise Analysis And Quantum Information

Author: Luigi Accardi

language: en

Publisher: World Scientific

Release Date: 2017-08-29


DOWNLOAD





This volume is to pique the interest of many researchers in the fields of infinite dimensional analysis and quantum probability. These fields have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. These fields are rather wide and are of a strongly interdisciplinary nature. For such a purpose, we strove to bridge among these interdisciplinary fields in our Workshop on IDAQP and their Applications that was held at the Institute for Mathematical Sciences, National University of Singapore from 3-7 March 2014. Readers will find that this volume contains all the exciting contributions by well-known researchers in search of new directions in these fields.

Let Us Use White Noise


Let Us Use White Noise

Author: Takeyuki Hida

language: en

Publisher: World Scientific

Release Date: 2017-03-10


DOWNLOAD





Why should we use white noise analysis? Well, one reason of course is that it fills that earlier gap in the tool kit. As Hida would put it, white noise provides us with a useful set of independent coordinates, parametrized by 'time'. And there is a feature which makes white noise analysis extremely user-friendly. Typically the physicist — and not only he — sits there with some heuristic ansatz, like e.g. the famous Feynman 'integral', wondering whether and how this might make sense mathematically. In many cases the characterization theorem of white noise analysis provides the user with a sweet and easy answer. Feynman's 'integral' can now be understood, the 'It's all in the vacuum' ansatz of Haag and Coester is now making sense via Dirichlet forms, and so on in many fields of application. There is mathematical finance, there have been applications in biology, and engineering, many more than we could collect in the present volume.Finally, there is one extra benefit: when we internalize the structures of Gaussian white noise analysis we will be ready to meet another close relative. We will enjoy the important similarities and differences which we encounter in the Poisson case, championed in particular by Y Kondratiev and his group. Let us look forward to a companion volume on the uses of Poisson white noise.The present volume is more than a collection of autonomous contributions. The introductory chapter on white noise analysis was made available to the other authors early on for reference and to facilitate conceptual and notational coherence in their work.