Methodology For Multilevel Modeling In Educational Research


Download Methodology For Multilevel Modeling In Educational Research PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methodology For Multilevel Modeling In Educational Research book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Methodology for Multilevel Modeling in Educational Research


Methodology for Multilevel Modeling in Educational Research

Author: Myint Swe Khine

language: en

Publisher: Springer Nature

Release Date: 2022-04-10


DOWNLOAD





This edited volume documents attempts to conduct systematic and prodigious research using multilevel analysis in educational settings, and present their findings and identify future research directions. It showcases the versatility of multilevel analysis, and elucidates the unique advantages in examining complex and wide-ranging educational issues. This book brings together leading experts around the world to share their works in the field, highlighting recent advances, creative and unique approaches, and innovative methods using multilevel modeling and theoretical and practical aspects of multilevel analysis in culturally and linguistically-diverse educational contexts.

Advances in Multilevel Modeling for Educational Research


Advances in Multilevel Modeling for Educational Research

Author: Jeffrey R. Harring

language: en

Publisher: IAP

Release Date: 2015-12-01


DOWNLOAD





The significance that practitioners are placing on the use of multilevel models is undeniable as researchers want to both accurately partition variance stemming from complex sampling designs and understand relations within and between variables describing the hierarchical levels of these nested data structures. Simply scan the applied literature and one can see evidence of this trend by noticing the number of articles adopting multilevel models as their primary modeling framework. Helping to drive the popularity of their use, governmental funding agencies continue to advocate the use of multilevel models as part of a comprehensive analytic strategy for conducting rigorous and relevant research to improve our nation’s education system. Advances in Multilevel Modeling for Educational Research: Addressing Practical Issues Found in Real?World Applications is a resource intended for advanced graduate students, faculty and/or researchers interested in multilevel data analysis, especially in education, social and behavioral sciences. The chapters are written by prominent methodological researchers across diverse research domains such as educational statistics, quantitative psychology, and psychometrics. Each chapter exposes the reader to some of the latest methodological innovations, refinements and state?of?the?art developments and perspectives in the analysis of multilevel data including current best practices of standard techniques. We believe this volume will be particularly appealing to researchers in domains including but not limited to: educational policy and administration, educational psychology including school psychology and special education, and clinical psychology. In fact, we believe this volume will be a desirable resource for any research area that uses hierarchically nested data. The book will likely be attractive to applied and methodological researchers in several professional organizations such as the American Educational Research Association (AERA), the American Psychological Association (APA), the American Psychological Society (APS), the Society for Research on Educational Effectiveness (SREE), and other related organizations.

Multilevel Modeling of Educational Data


Multilevel Modeling of Educational Data

Author: Ann A. O'Connell

language: en

Publisher: IAP

Release Date: 2008-04-01


DOWNLOAD





(sponsored by the Educational Statisticians, SIG) Multilevel Modeling of Educational Data, co-edited by Ann A. O’Connell, Ed.D., and D. Betsy McCoach, Ph.D., is the next volume in the series: Quantitative Methods in Education and the Behavioral Sciences: Issues, Research and Teaching (Information Age Publishing), sponsored by the Educational Statisticians' Special Interest Group (Ed-Stat SIG) of the American Educational Research Association. The use of multilevel analyses to examine effects of groups or contexts on individual outcomes has burgeoned over the past few decades. Multilevel modeling techniques allow educational researchers to more appropriately model data that occur within multiple hierarchies (i.e.- the classroom, the school, and/or the district). Examples of multilevel research problems involving schools include establishing trajectories of academic achievement for children within diverse classrooms or schools or studying school-level characteristics on the incidence of bullying. Multilevel models provide an improvement over traditional single-level approaches to working with clustered or hierarchical data; however, multilevel data present complex and interesting methodological challenges for the applied education research community. In keeping with the pedagogical focus for this book series, the papers this volume emphasize applications of multilevel models using educational data, with chapter topics ranging from basic to advanced. This book represents a comprehensive and instructional resource text on multilevel modeling for quantitative researchers who plan to use multilevel techniques in their work, as well as for professors and students of quantitative methods courses focusing on multilevel analysis. Through the contributions of experienced researchers and teachers of multilevel modeling, this volume provides an accessible and practical treatment of methods appropriate for use in a first and/or second course in multilevel analysis. A supporting website links chapter examples to actual data, creating an opportunity for readers to reinforce their knowledge through hands-on data analysis. This book serves as a guide for designing multilevel studies and applying multilevel modeling techniques in educational and behavioral research, thus contributing to a better understanding of and solution for the challenges posed by multilevel systems and data.