Methodologies Of Pattern Recognition


Download Methodologies Of Pattern Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methodologies Of Pattern Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Pattern Recognition


Pattern Recognition

Author: J.P. Marques de Sá

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Pattern recognition currently comprises a vast body of methods supporting the development of numerous applications in many different areas of activity. The generally recognized relevance of pattern recognition methods and techniques lies, for the most part, in the general trend of "intelligent" task emulation, which has definitely pervaded our daily life. Robot assisted manufacture, medical diagnostic systems, forecast of economic variables, exploration of Earth's resources, and analysis of satellite data are just a few examples of activity fields where this trend applies. The pervasiveness of pattern recognition has boosted the number of task specific methodologies and enriched the number of links with other disciplines. As counterbalance to this dispersive tendency there have been, more recently, new theoretical developments that are bridging together many of the classical pattern recognition methods and presenting a new perspective of their links and inner workings. This book has its origin in an introductory course on pattern recognition taught at the Electrical and Computer Engineering Department, Oporto University. From the initial core of this course, the book grew with the intent of presenting a comprehensive and articulated view of pattern recognition methods combined with the intent of clarifying practical issues with the aid of examples and applications to real-life data. The book is primarily addressed to undergraduate and graduate students attending pattern recognition courses of engineering and computer science curricula.

Pattern Classification Using Ensemble Methods


Pattern Classification Using Ensemble Methods

Author: Lior Rokach

language: en

Publisher: World Scientific

Release Date: 2010


DOWNLOAD





Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method.

Pattern Recognition Algorithms for Data Mining


Pattern Recognition Algorithms for Data Mining

Author: Sankar K. Pal

language: en

Publisher: CRC Press

Release Date: 2004-05-27


DOWNLOAD





Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.