Mems Resonant Strain Sensor Integration

Download Mems Resonant Strain Sensor Integration PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mems Resonant Strain Sensor Integration book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
MEMS Resonant Strain Sensor Integration

Despite commercial availability since the 1950's, silicon strain sensors have not experienced the same success as other microdevices, such as accelerometers, pressure sensors, and inkjet heads. Strain sensors measure mechanical deformation and could be used in many structural components, improving safety, controls, and manufacturing tolerances. This thesis examines major strain sensing techniques and highlights both advantages and disadvantages of each. MEMS resonant strain gauges are identified to have superior performance over many traditional strain gauges in terms of sensitivity, resolution, stability, and size. To use these gauges, additional issues such as harsh environment survivability, strain transfer, temperature stability, and encapsulation must be solved, as detailed in this thesis. Concerning harsh environment survivability, this work presents a MEMS resonant strain gauge fabricated from silicon carbide, which operates at 600°C, and has been tested to 64,000 G, while still resolving 0.01 microstrain in a 10 kHz bandwidth. Specific details on how to create harsh environment testing equipment are presented. Additionally, this original work identifies a unique temperature stability method based on purposely mismatched device and substrate layers. Full analytical equations are presented, and experimental confirmation of the scheme shows that temperature stability is improved from 23 ppm/°C to 3.6 ppm/°C. All MEMS devices are created on flat substrates, which are useful when integrating electronics, but can be difficult to use when measuring strain in structural components, especially round objects. Furthermore, no work has been presented for gauges operating at high strain. To address this issue, this thesis contains the first demonstration of a MEMS resonant strain gauge operating at 1000 microstrain on a static automobile halfshaft. Details on joining the substrate to the circular halfshaft are presented, as well as how to treat the issue of strain transfer. To protect the device, encapsulation is designed specifically to not change the strain sensitivity of the gauge. The encapsulation utilizes directional ion beam sputtering, which is experimentally shown to deposit spatially confined, extremely thin material through the release holes. Typical depositions were nanometers in thickness (
MEMS Mechanical Sensors

Annotation Engineers and researchers can turn to this reference time and time again when they need to overcome challenges in design, simulation, fabrication, and application of MEMS (microelectromechanical systems) sensors.
Handbook of Silicon Based MEMS Materials and Technologies

A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: - Silicon as MEMS material - Material properties and measurement techniques - Analytical methods used in materials characterization - Modeling in MEMS - Measuring MEMS - Micromachining technologies in MEMS - Encapsulation of MEMS components - Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. - Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. - Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. - Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. - Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. - Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques - Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs - Discusses properties, preparation, and growth of silicon crystals and wafers - Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures