Mechanics Based Investigation Into The Structural Integrity And Optimization Of Core Shell Nanostructured Electrode Materials For Lithium Ion Batteries


Download Mechanics Based Investigation Into The Structural Integrity And Optimization Of Core Shell Nanostructured Electrode Materials For Lithium Ion Batteries PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mechanics Based Investigation Into The Structural Integrity And Optimization Of Core Shell Nanostructured Electrode Materials For Lithium Ion Batteries book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mechanics-based Investigation Into the Structural Integrity and Optimization of Core-shell Nanostructured Electrode Materials for Lithium Ion Batteries


Mechanics-based Investigation Into the Structural Integrity and Optimization of Core-shell Nanostructured Electrode Materials for Lithium Ion Batteries

Author: Weiqun Li

language: en

Publisher:

Release Date: 2017


DOWNLOAD





To further improve the stability and capacity of the Si-based anode materials, the yolk-shell carbon-coated Si nanoparticles, which contain a void space between the yolk and shell, were studied through in situ lithiation and theoretical modeling, as discussed in Chapter 6. The geometrical dimension-dependent fracture of the nanoparticles was revealed from the experimental studies. A mechanics-based theoretical model was proposed to calculate the stress states in the carbon shell upon full lithiation. A design guideline was provided to maintain the structural integrity and maximize the capacity by optimizing the geometrical dimensions of the yolk-shell carbon-coated Si nanoparticles. Apart from voiding the fracture, interfacial stability between electrodes and cooper (Cu) current collector is also important for improving the performance of the Si-based electrode materials. In Chapter 7, the Si-coated Cu nanowires were synthesized though hydrothermal method and magnetron sputtering technique. The lithium nanostructures formed on the surface of Si shell during delithiation. The bulk lithium nanostructures reacted with the delithiated Si shell to form LixSi, inducing the fracture of the Si shell. However, the Si shell adhered well with the Cu core, indicating a stable cycling performance. These results showed the potential application of the Si-coated Cu nanowire structured anode materials for lithium ion batteries. Through the comprehensive studies of the core-shell nanostructured electrode materials, the lithiation/delithiation and fracture mechanisms of the high-capacity core-shell nanostructured electrode materials were analyzed. The experimental and theoretical approaches should be beneficial for the study of other electrode materials. The optimal design guidelines proposed in this thesis should be of great value for the design of the core-shell structured electrode materials with supreme structural integrity and high capacity for lithium ion batteries.

Inorganic Battery Materials


Inorganic Battery Materials

Author: Hailiang Wang

language: en

Publisher: John Wiley & Sons

Release Date: 2019-08-23


DOWNLOAD





A guide to the fundamental chemistry and recent advances of battery materials In one comprehensive volume, Inorganic Battery Materials explores the basic chemistry principles, recent advances, and the challenges and opportunities of the current and emerging technologies of battery materials. With contributions from an international panel of experts, this authoritative resource contains information on the fundamental features of battery materials, discussions on material synthesis, structural characterizations and electrochemical reactions. The book explores a wide range of topics including the state-of-the-art lithium ion battery chemistry to more energy-aggressive chemistries involving lithium metal. The authors also include a review of sulfur and oxygen, aqueous battery chemistry, redox flow battery chemistry, solid state battery chemistry and environmentally beneficial carbon dioxide battery chemistry. In the context of renewable energy utilization and transportation electrification, battery technologies have been under more extensive and intensive development than ever. This important book: Provides an understanding of the chemistry of a battery technology Explores battery technology's potential as well as the obstacles that hamper the potential from being realized Highlights new applications and points out the potential growth areas that can serve as inspirations for future research Includes an understanding of the chemistry of battery materials and how they store and convert energy Written for students and academics in the fields of energy materials, electrochemistry, solid state chemistry, inorganic materials chemistry and materials science, Inorganic Battery Materials focuses on the inorganic chemistry of battery materials associated with both current and future battery technologies to provide a unique reference in the field. About EIBC Books The Encyclopedia of Inorganic and Bioinorganic Chemistry (EIBC) was created as an online reference in 2012 by merging the Encyclopedia of Inorganic Chemistry and the Handbook of Metalloproteins. The resulting combination proves to be the defining reference work in the field of inorganic and bioinorganic chemistry, and a lot of chemistry libraries around the world have access to the online version. Many readers, however, prefer to have more concise thematic volumes in print, targeted to their specific area of interest. This feedback from EIBC readers has encouraged the Editors to plan a series of EIBC Books [formerly called EIC Books], focusing on topics of current interest. EIBC Books will appear on a regular basis, will be edited by the EIBC Editors and specialist Guest Editors, and will feature articles from leading scholars in their fields. EIBC Books aim to provide both the starting research student and the confirmed research worker with a critical distillation of the leading concepts in inorganic and bioinorganic chemistry, and provide a structured entry into the fields covered.

Nanostructured Tin-Based Anodes for Lithium Ion Batteries with X-Ray Absorption Fine Structure Studies


Nanostructured Tin-Based Anodes for Lithium Ion Batteries with X-Ray Absorption Fine Structure Studies

Author: Dongniu Wang

language: en

Publisher:

Release Date: 2013


DOWNLOAD





The practical applications of lithium ion batteries are highly dependent on the choice of electrodes, where boosting the materials innovations to design and achieve high capacity, excellent cycling performance, rate capability, low-cost and safe electrode materials provide the best solution. Based on this, tin-based anodes have gained great attention due to its high theoretical capacity, low cost and nontoxic nature to environment. Nevertheless, it undergoes significant volume variation(259%)during the operation of the battery, leading to pulverization and significant capacity fade. Thus, the practical application of tin-based anodes is still quite challenging. This thesis tackles issues related to tin-based anodes. It is demonstrated that designing hierarchical nanostructured tin and tin-based carbon composites particular tin-based graphene composites are the most effective routes to achieve excellent electrochemical properties. In this thesis, we reported the rational design and fabrication of nanostructured tin-based anodes which began with the synthesis of relevant electrode materials as well as evaluation of their electrochemical performance. Further, synchrotron based X-ray absorption spectroscopy was conducted to unveil the electronic structure of these composites for better understanding of the mechanism behind the performance. Various strategies of material design have been used. These include: (i) SnO2 nanowires on conducting substrates are successfully obtained using hydrothermal process. The electronic structure and the optical properties study revealed the different crystallinity and surface/defect states related luminescence. (ii) Further we extend the research to fabricate the hierarchical tin-based graphene composites such as graphene-SnO2 nanoparticles and SnO2 nanowire/graphene/carbon composites using hydrothermal method. The hierarchical nanocomposites exhibit better performance in both high and stable capacity benefitting from the buffering effect of carbonaceous materials as well as high capacity of tin dioxide. (iii) In addition, Sn@C-graphene was obtained using chemical vapor deposition method. The core-shelled Sn@C nanoparticles are well embedded in graphene matrix with superior electrochemical performances. (iv) Refer to Sn@C nanowires on metallic substrates obtained by the same route, the high cyclic capability is achieved benefitting from the one dimensional core-shell structure. (v) Most interestingly, through surface coating of Al2O3 on SnO2 electrodes via atomic layer deposition, we found that the well defined and optimized Al2O3 layer could relieve mechanical degradation and form an artificial SEI layer, leading to improved electrochemical performances compared with bare SnO2 electrodes. The element specific X-ray absorption spectra uniquely characterize the Sn, C and O specified edge of target samples, providing the information of the cystallinity and surface/defect states, revealing the strong chemical bonding and interactions between Sn or SnO2 with graphene or carbon layer, allowing for better understanding of the performance. The study in this thesis demonstrates nanostructured tin-based anodes can be alternative high performance anodes in the next generation lithium ion batteries.