Maximum Entropy Meaning


Download Maximum Entropy Meaning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Maximum Entropy Meaning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Maximum Entropy and Ecology


Maximum Entropy and Ecology

Author: John Harte

language: en

Publisher: OUP Oxford

Release Date: 2011-06-23


DOWNLOAD





This pioneering graduate textbook provides readers with the concepts and practical tools required to understand the maximum entropy principle, and apply it to an understanding of ecological patterns. Rather than building and combining mechanistic models of ecosystems, the approach is grounded in information theory and the logic of inference. Paralleling the derivation of thermodynamics from the maximum entropy principle, the state variable theory of ecology developed in this book predicts realistic forms for all metrics of ecology that describe patterns in the distribution, abundance, and energetics of species over multiple spatial scales, a wide range of habitats, and diverse taxonomic groups. The first part of the book is foundational, discussing the nature of theory, the relationship of ecology to other sciences, and the concept of the logic of inference. Subsequent sections present the fundamentals of macroecology and of maximum information entropy, starting from first principles. The core of the book integrates these fundamental principles, leading to the derivation and testing of the predictions of the maximum entropy theory of ecology (METE). A final section broadens the book's perspective by showing how METE can help clarify several major issues in conservation biology, placing it in context with other theories and highlighting avenues for future research.

Maximum Entropy and Bayesian Methods


Maximum Entropy and Bayesian Methods

Author: John Skilling

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This volume records papers given at the fourteenth international maximum entropy conference, held at St John's College Cambridge, England. It seems hard to believe that just thirteen years have passed since the first in the series, held at the University of Wyoming in 1981, and six years have passed since the meeting last took place here in Cambridge. So much has happened. There are two major themes at these meetings, inference and physics. The inference work uses the confluence of Bayesian and maximum entropy ideas to develop and explore a wide range of scientific applications, mostly concerning data analysis in one form or another. The physics work uses maximum entropy ideas to explore the thermodynamic world of macroscopic phenomena. Of the two, physics has the deeper historical roots, and much of the inspiration behind the inference work derives from physics. Yet it is no accident that most of the papers at these meetings are on the inference side. To develop new physics, one must use one's brains alone. To develop inference, computers are used as well, so that the stunning advances in computational power render the field open to rapid advance. Indeed, we have seen a revolution. In the larger world of statistics beyond the maximum entropy movement as such, there is now an explosion of work in Bayesian methods, as the inherent superiority of a defensible and consistent logical structure becomes increasingly apparent in practice.

Maximum Entropy and Bayesian Methods


Maximum Entropy and Bayesian Methods

Author: P.F. Fougère

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This volume represents the proceedings of the Ninth Annual MaxEnt Workshop, held at Dartmouth College in Hanover, New Hampshire, on August 14-18, 1989. These annual meetings are devoted to the theory and practice of Bayesian Probability and the Maximum Entropy Formalism. The fields of application exemplified at MaxEnt '89 are as diverse as the foundations of probability theory and atmospheric carbon variations, the 1987 Supernova and fundamental quantum mechanics. Subjects include sea floor drug absorption in man, pressures, neutron scattering, plasma equilibrium, nuclear magnetic resonance, radar and astrophysical image reconstruction, mass spectrometry, generalized parameter estimation, delay estimation, pattern recognition, heave responses in underwater sound and many others. The first ten papers are on probability theory, and are grouped together beginning with the most abstract followed by those on applications. The tenth paper involves both Bayesian and MaxEnt methods and serves as a bridge to the remaining papers which are devoted to Maximum Entropy theory and practice. Once again, an attempt has been made to start with the more theoretical papers and to follow them with more and more practical applications. Papers number 29, 30 and 31, by Kesaven, Seth and Kapur, represent a somewhat different, perhaps even "unorthodox" viewpoint, and are included here even though the editor and, indeed many in the audience at Dartmouth, disagreed with their content. I feel that scientific disagreements are essential in any developing field, and often lead to a deeper understanding.