Maximum Entropy Information Without Probability And Complex Fractals

Download Maximum Entropy Information Without Probability And Complex Fractals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Maximum Entropy Information Without Probability And Complex Fractals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Maximum Entropy, Information Without Probability and Complex Fractals

Author: Guy Jumarie
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
Every thought is a throw of dice. Stephane Mallarme This book is the last one of a trilogy which reports a part of our research work over nearly thirty years (we discard our non-conventional results in automatic control theory and applications on the one hand, and fuzzy sets on the other), and its main key words are Information Theory, Entropy, Maximum Entropy Principle, Linguistics, Thermodynamics, Quantum Mechanics, Fractals, Fractional Brownian Motion, Stochastic Differential Equations of Order n, Stochastic Optimal Control, Computer Vision. Our obsession has been always the same: Shannon's information theory should play a basic role in the foundations of sciences, but subject to the condition that it be suitably generalized to allow us to deal with problems which are not necessarily related to communication engineering. With this objective in mind, two questions are of utmost importance: (i) How can we introduce meaning or significance of information in Shannon's information theory? (ii) How can we define and/or measure the amount of information involved in a form or a pattern without using a probabilistic scheme? It is obligatory to find suitable answers to these problems if we want to apply Shannon's theory to science with some chance of success. For instance, its use in biology has been very disappointing, for the very reason that the meaning of information is there of basic importance, and is not involved in this approach.
Entropy Measures, Maximum Entropy Principle and Emerging Applications

The last two decades have witnessed an enormous growth with regard to ap plications of information theoretic framework in areas of physical, biological, engineering and even social sciences. In particular, growth has been spectac ular in the field of information technology,soft computing,nonlinear systems and molecular biology. Claude Shannon in 1948 laid the foundation of the field of information theory in the context of communication theory. It is in deed remarkable that his framework is as relevant today as was when he 1 proposed it. Shannon died on Feb 24, 2001. Arun Netravali observes "As if assuming that inexpensive, high-speed processing would come to pass, Shan non figured out the upper limits on communication rates. First in telephone channels, then in optical communications, and now in wireless, Shannon has had the utmost value in defining the engineering limits we face". Shannon introduced the concept of entropy. The notable feature of the entropy frame work is that it enables quantification of uncertainty present in a system. In many realistic situations one is confronted only with partial or incomplete information in the form of moment, or bounds on these values etc. ; and it is then required to construct a probabilistic model from this partial information. In such situations, the principle of maximum entropy provides a rational ba sis for constructing a probabilistic model. It is thus necessary and important to keep track of advances in the applications of maximum entropy principle to ever expanding areas of knowledge.