Matlab Machine Learning Recipes


Download Matlab Machine Learning Recipes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Matlab Machine Learning Recipes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

MATLAB Machine Learning Recipes


MATLAB Machine Learning Recipes

Author: Michael Paluszek

language: en

Publisher: Apress

Release Date: 2019-01-31


DOWNLOAD





Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. What you'll learn: How to write code for machine learning, adaptive control and estimation using MATLAB How these three areas complement each other How these three areas are needed for robust machine learning applications How to use MATLAB graphics and visualization tools for machine learning How to code real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers, data scientists and students wanting a comprehensive and code cookbook rich in examples on machine learning using MATLAB.

MATLAB Machine Learning Recipes


MATLAB Machine Learning Recipes

Author: Michael Paluszek

language: en

Publisher: Springer Nature

Release Date: 2024-03-01


DOWNLOAD





Harness the power of MATLAB to resolve a wide range of machine learning challenges. This new and updated third edition provides examples of technologies critical to machine learning. Each example solves a real-world problem, and all code provided is executable. You can easily look up a particular problem and follow the steps in the solution. This book has something for everyone interested in machine learning. It also has material that will allow those with an interest in other technology areas to see how machine learning and MATLAB can help them solve problems in their areas of expertise. The chapter on data representation and MATLAB graphics includes new data types and additional graphics. Chapters on fuzzy logic, simple neural nets, and autonomous driving have new examples added. And there is a new chapter on spacecraft attitude determination using neural nets. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow you to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. What You Will Learn Write code for machine learning, adaptive control, and estimation using MATLAB Use MATLAB graphics and visualization tools for machine learning Become familiar with neural nets Build expert systems Understand adaptive control Gain knowledge of Kalman Filters Who This Book Is For Software engineers, control engineers, university faculty, undergraduate and graduate students, hobbyists.

Practical MATLAB Deep Learning


Practical MATLAB Deep Learning

Author: Michael Paluszek

language: en

Publisher: Apress

Release Date: 2020-02-07


DOWNLOAD





Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. You’ll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'll learn to model complex systems, including the stock market, natural language, and angles-only orbit determination. You’ll cover dynamics and control, and integrate deep-learning algorithms and approaches using MATLAB. You'll also apply deep learning to aircraft navigation using images. Finally, you'll carry out classification of ballet pirouettes using an inertial measurement unit to experiment with MATLAB's hardware capabilities. What You Will Learn Explore deep learning using MATLAB and compare it to algorithms Write a deep learning function in MATLAB and train it with examples Use MATLAB toolboxes related to deep learning Implement tokamak disruption prediction Who This Book Is For Engineers, data scientists, and students wanting a book rich in examples on deep learning using MATLAB.