Mathematics Of Open Quantum Systems The Dissipative And Non Unitary Representations And Quantum Measurements


Download Mathematics Of Open Quantum Systems The Dissipative And Non Unitary Representations And Quantum Measurements PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematics Of Open Quantum Systems The Dissipative And Non Unitary Representations And Quantum Measurements book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mathematics Of Open Quantum Systems, The: Dissipative And Non-unitary Representations And Quantum Measurements


Mathematics Of Open Quantum Systems, The: Dissipative And Non-unitary Representations And Quantum Measurements

Author: Konstantin A Makarov

language: en

Publisher: World Scientific

Release Date: 2021-12-24


DOWNLOAD





This book presents new developments in the open quantum systems theory with emphasis on applications to the (frequent) measurement theory.In the first part of the book, the uniqueness theorems for the solutions to the restricted Weyl commutation relations braiding unitary groups and semi-groups of contractions are discussed. The major theme involves an intrinsic characterization of the simplest symmetric operator solutions to the Heisenberg uncertainty relations, the problem posed by Jørgensen and Muhly, followed by the proof of the uniqueness theorems for the simplest solutions to the restricted Weyl commutation relations. The detailed study of unitary invariants of the corresponding dissipative and symmetric operators opens up a look at the classical Stone-von Neumann uniqueness theorem from a new angle and provides an extended version of the uniqueness result relating various realizations of a differentiation operator on the corresponding metric graphs.The second part of the book is devoted to mathematical problems of the quantum measurements under continuous monitoring. Among the topics discussed are the complementarity of the Quantum Zeno effect and Exponential Decay scenario in frequent quantum measurements, and a rigorous treatment, within continuous monitoring paradigm, of the celebrated 'double-slit experiment' where the renowned exclusive and interference measurement alternatives approach in quantum theory is presented in a way that is accessible for mathematicians. One of the striking applications of the generalized (1-stable) central limit theorem is the mathematical evidence of exponential decay of unstable states of the quantum pendulum under continuous monitoring.

A Mathematical Introduction to Electronic Structure Theory


A Mathematical Introduction to Electronic Structure Theory

Author: Lin Lin

language: en

Publisher: SIAM

Release Date: 2019-06-05


DOWNLOAD





Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.

Open Quantum Systems


Open Quantum Systems

Author: Ángel Rivas

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-10-01


DOWNLOAD





In this volume the fundamental theory of open quantum systems is revised in the light of modern developments in the field. A unified approach to the quantum evolution of open systems is presented by merging concepts and methods traditionally employed by different communities, such as quantum optics, condensed matter, chemical physics and mathematical physics. The mathematical structure and the general properties of the dynamical maps underlying open system dynamics are explained in detail. The microscopic derivation of dynamical equations, including both Markovian and non-Markovian evolutions, is also discussed. Because of the step-by-step explanations, this work is a useful reference to novices in this field. However, experienced researches can also benefit from the presentation of recent results.