Mathematics For Dynamic Modeling


Download Mathematics For Dynamic Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematics For Dynamic Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mathematics for Dynamic Modeling


Mathematics for Dynamic Modeling

Author: Edward Beltrami

language: en

Publisher: Academic Press

Release Date: 1998


DOWNLOAD





This new edition of Mathematics for Dynamic Modeling updates a widely used and highly-respected textbook. The text is appropriate for upper-level undergraduate and graduate level courses in modeling, dynamical systems, differential equations, and linear multivariable systems offered in a variety of departments including mathematics, engineering, computer science, and economics. The text features many different realistic applications from a wide variety of disciplines. The book covers important tools such as linearization, feedback concepts, the use of Liapunov functions, and optimal control. This new edition is a valuable tool for understanding and teaching a rapidly growing field. Practitioners and researchers may also find this book of interest. Contains a new chapter on stability of dynamic models Covers many realistic applications from a wide variety of fields in an accessible manner Provides a broad introduction to the full scope of dynamical systems Incorporates new developments such as new models for chemical reactions and autocatalysis Integrates MATLAB throughout the text in both examples and illustrations Includes a new introduction to nonlinear differential equations

Mathematics for Dynamic Modeling


Mathematics for Dynamic Modeling

Author: Edward Beltrami

language: en

Publisher: Academic Press

Release Date: 2014-05-10


DOWNLOAD





Mathematics for Dynamic Modeling provides an introduction to the mathematics of dynamical systems. This book presents the mathematical formulations in terms of linear and nonlinear differential equations. Organized into two parts encompassing nine chapters, this book begins with an overview of the notions of equilibrium and stability in differential equation modeling that occur in the guise of simple models in the plane. This text then focuses on nonlinear models in which the limiting behavior of orbits can be more complicated. Other chapters consider the problems that illustrate the concepts of equilibrium and stability, limit cycles, chaos, and bifurcation. This book discusses as well a variety of topics, including cusp catastrophes, strange attractors, and reaction–diffusion and shock phenomena. The final chapter deals with models that are based on the notion of optimization. This book is intended to be suitable for students in upper undergraduate and first-year graduate course in mathematical modeling.

Mathematical Modeling


Mathematical Modeling

Author: Christof Eck

language: en

Publisher: Springer

Release Date: 2017-04-11


DOWNLOAD





Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.