Mathematics And Statistics For The Quantitative Sciences

Download Mathematics And Statistics For The Quantitative Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematics And Statistics For The Quantitative Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematics and Statistics for the Quantitative Sciences

Mathematics and Statistics for the Quantitative Sciences was born from a radical reimagining of first-year mathematics. While calculus is often seen as the foundational mathematics required for any scientist, this often leads to mathematics being seen as some, ultimately useless, hoop that needs to be jumped through in order to do what someone really wants to do. This sentiment is everywhere at every level of education. It even shows up in how people stereotype mathematics courses. What this book aims to do, therefore, is serve as a foundational text in everyday mathematics in a way that is both engaging and practically useful. The book seeks to teach the mathematics needed to start to answer fundamental questions like ‘why’ or ‘how’. Why do we only need to take census data once every few years? How do we determine the optimal dosing of a new pharmaceutical without killing people in the process? Or, more generally, what does it even mean to be average? Or what does it mean for two things to actually be different? These questions require a different way of thinking — a quantitative intuition that goes beyond rote memorization and equips readers to meet the quantitative challenges inherent in any applied discipline. Features Draws from a diverse range of fields to make the applications as inclusive as possible Would be ideal as a foundational mathematical and statistical textbook for any applied quantitative science course
Essential Mathematics and Statistics for Forensic Science

This text is an accessible, student-friendly introduction to the wide range of mathematical and statistical tools needed by the forensic scientist in the analysis, interpretation and presentation of experimental measurements. From a basis of high school mathematics, the book develops essential quantitative analysis techniques within the context of a broad range of forensic applications. This clearly structured text focuses on developing core mathematical skills together with an understanding of the calculations associated with the analysis of experimental work, including an emphasis on the use of graphs and the evaluation of uncertainties. Through a broad study of probability and statistics, the reader is led ultimately to the use of Bayesian approaches to the evaluation of evidence within the court. In every section, forensic applications such as ballistics trajectories, post-mortem cooling, aspects of forensic pharmacokinetics, the matching of glass evidence, the formation of bloodstains and the interpretation of DNA profiles are discussed and examples of calculations are worked through. In every chapter there are numerous self-assessment problems to aid student learning. Its broad scope and forensically focused coverage make this book an essential text for students embarking on any degree course in forensic science or forensic analysis, as well as an invaluable reference for post-graduate students and forensic professionals. Key features: Offers a unique mix of mathematics and statistics topics, specifically tailored to a forensic science undergraduate degree. All topics illustrated with examples from the forensic science discipline. Written in an accessible, student-friendly way to engage interest and enhance learning and confidence. Assumes only a basic high-school level prior mathematical knowledge.
Probability and Statistical Models

Author: Arjun K. Gupta
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-08-26
With an emphasis on models and techniques, this textbook introduces many of the fundamental concepts of stochastic modeling that are now a vital component of almost every scientific investigation. In particular, emphasis is placed on laying the foundation for solving problems in reliability, insurance, finance, and credit risk. The material has been carefully selected to cover the basic concepts and techniques on each topic, making this an ideal introductory gateway to more advanced learning. With exercises and solutions to selected problems accompanying each chapter, this textbook is for a wide audience including advanced undergraduate and beginning-level graduate students, researchers, and practitioners in mathematics, statistics, engineering, and economics.