Mathematics And R Programming For Machine Learning

Download Mathematics And R Programming For Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematics And R Programming For Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematics and Programming for Machine Learning with R

Based on the author's experience teaching data science for more than 10 years, Mathematics and R Programming for Machine Learningreveals how machine learning algorithms do their magic and explains how logic can be implemented in code. It is designed to give students an understanding of the logic behind machine learning algorithms as well as how to program these algorithms. Written for novice programmers, the book goes step-by-step to develop coding skills needed to implement algorithms in R. The text begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with artificial neural network-based machine learning. The first half of the text does not require mathematical sophistication, although familiarity with probability and statistics is helpful. The second half is written for students who have taken one semester of calculus. The book guides students, who are novice R programmers, through algorithms and their application to improve the ability to code and confidence in programming R and tackling advance R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners on implementing full-fledged algorithms. Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of the heart of AI and machine learning as well as the mechanisms that underly machine learning algorithms
Mathematics for Machine Learning

Author: Marc Peter Deisenroth
language: en
Publisher: Cambridge University Press
Release Date: 2020-04-23
Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.
Statistical Learning with Math and Python

The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of machine learning and data science by considering math problems and building Python programs. As the preliminary part, Chapter 1 provides a concise introduction to linear algebra, which will help novices read further to the following main chapters. Those succeeding chapters present essential topics in statistical learning: linear regression, classification, resampling, information criteria, regularization, nonlinear regression, decision trees, support vector machines, and unsupervised learning. Each chapter mathematically formulates and solves machine learning problems and builds the programs. The body of a chapter is accompanied by proofs and programs in an appendix, with exercises at the end of the chapter. Because the book is carefully organized to provide the solutions to the exercises in each chapter, readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 12 lectures. Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning.