Mathematical Uncertainties And Their Applications


Download Mathematical Uncertainties And Their Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Uncertainties And Their Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Applications of Mathematics of Uncertainty


Applications of Mathematics of Uncertainty

Author: John N. Mordeson

language: en

Publisher: Springer Nature

Release Date: 2021-11-17


DOWNLOAD





This book provides an examination of major problems facing the world using mathematics of uncertainty. These problems include climate change, coronavirus pandemic, human tracking, biodiversity, and other grand challenges. Mathematics of uncertainty is used in a modern more general sense than traditional mathematics. Since accurate data is impossible to obtain concerning human tracking and other global problems, mathematics of uncertainty is an ideal discipline to study these problems. The authors place several scientific studies into different mathematical settings such as nonstandard analysis and soft logic. Fuzzy differentiation is used to model the spread of diseases such as the coronavirus. The book uses fuzzy graph theory to examine the problems of human tracking and illegal immigration. The book is an excellent reference source for advanced under-graduate and graduate students in mathematics and the social sciences as well as for researchers and teachers.

Measurement Uncertainty


Measurement Uncertainty

Author: Simona Salicone

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-06-04


DOWNLOAD





It is widely recognized, by the scienti?c and technical community that m- surements are the bridge between the empiric world and that of the abstract concepts and knowledge. In fact, measurements provide us the quantitative knowledge about things and phenomena. It is also widely recognized that the measurement result is capable of p- viding only incomplete information about the actual value of the measurand, that is, the quantity being measured. Therefore, a measurement result - comes useful, in any practicalsituation, only if a way is de?ned for estimating how incomplete is this information. The more recentdevelopment of measurement science has identi?ed in the uncertainty concept the most suitable way to quantify how incomplete is the information provided by a measurement result. However, the problem of how torepresentameasurementresulttogetherwithitsuncertaintyandpropagate measurementuncertaintyisstillanopentopicinthe?eldofmetrology,despite many contributions that have been published in the literature over the years. Many problems are in fact still unsolved, starting from the identi?cation of the best mathematical approach for representing incomplete knowledge. Currently, measurement uncertainty is treated in a purely probabilistic way, because the Theory of Probability has been considered the only available mathematical theory capable of handling incomplete information. However, this approach has the main drawback of requiring full compensation of any systematic e?ect that a?ects the measurement process. However, especially in many practical application, the identi?cation and compensation of all s- tematic e?ects is not always possible or cost e?ective.

Nonlinear Mathematics for Uncertainty and its Applications


Nonlinear Mathematics for Uncertainty and its Applications

Author: Shoumei Li

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-07-21


DOWNLOAD





This volume is a collection of papers presented at the international conference on Nonlinear Mathematics for Uncertainty and Its Applications (NLMUA2011), held at Beijing University of Technology during the week of September 7--9, 2011. The conference brought together leading researchers and practitioners involved with all aspects of nonlinear mathematics for uncertainty and its applications. Over the last fifty years there have been many attempts in extending the theory of classical probability and statistical models to the generalized one which can cope with problems of inference and decision making when the model-related information is scarce, vague, ambiguous, or incomplete. Such attempts include the study of nonadditive measures and their integrals, imprecise probabilities and random sets, and their applications in information sciences, economics, finance, insurance, engineering, and social sciences. The book presents topics including nonadditive measures and nonlinear integrals, Choquet, Sugeno and other types of integrals, possibility theory, Dempster-Shafer theory, random sets, fuzzy random sets and related statistics, set-valued and fuzzy stochastic processes, imprecise probability theory and related statistical models, fuzzy mathematics, nonlinear functional analysis, information theory, mathematical finance and risk managements, decision making under various types of uncertainty, and others.