Mathematical Topics In Fluid Mechanics


Download Mathematical Topics In Fluid Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Topics In Fluid Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models


Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models

Author: Pierre-Louis Lions

language: en

Publisher: Oxford University Press

Release Date: 1996


DOWNLOAD





Fluid mechanics models consist of systems of nonlinear partial differential equations for which, despite a long history of important mathematical contributions, no complete mathematical understanding is available. The second volume of this book describes compressible fluid-mechanics models. The book contains entirely new material on a subject known to be rather difficult and important for applications (compressible flows). It is probably a unique effort on the mathematical problems associated with the compressible Navier-Stokes equations, written by one of the world's leading experts on nonlinear partial differential equations. Professor P.L. Lions won the Fields Medal in 1994.

Mathematical Topics in Fluid Mechanics


Mathematical Topics in Fluid Mechanics

Author: Jose Francisco Rodrigues

language: en

Publisher: CRC Press

Release Date: 2020-09-30


DOWNLOAD





This Research Note presents several contributions and mathematical studies in fluid mechanics, namely in non-Newtonian and viscoelastic fluids and on the Navier-Stokes equations in unbounded domains. It includes review of the mathematical analysis of incompressible and compressible flows and results in magnetohydrodynamic and electrohydrodynamic stability and thermoconvective flow of Boussinesq-Stefan type. These studies, along with brief communications on a variety of related topics comprise the proceedings of a summer course held in Lisbon, Portugal in 1991. Together they provide a set of comprehensive survey and advanced introduction to problems in fluid mechanics and partial differential equations.

A Mathematical Introduction to Fluid Mechanics


A Mathematical Introduction to Fluid Mechanics

Author: A. J. Chorin

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





These notes are based on a one-quarter (i. e. very short) course in fluid mechanics taught in the Department of Mathematics of the University of California, Berkeley during the Spring of 1978. The goal of the course was not to provide an exhaustive account of fluid mechanics, nor to assess the engineering value of various approxima tion procedures. The goals were: (i) to present some of the basic ideas of fluid mechanics in a mathematically attractive manner (which does not mean "fully rigorous"); (ii) to present the physical back ground and motivation for some constructions which have been used in recent mathematical and numerical work on the Navier-Stokes equations and on hyperbolic systems; (iil. ) 'to interest some of the students in this beautiful and difficult subject. The notes are divided into three chapters. The first chapter contains an elementary derivation of the equations; the concept of vorticity is introduced at an early stage. The second chapter contains a discussion of potential flow, vortex motion, and boundary layers. A construction of boundary layers using vortex sheets and random walks is presented; it is hoped that it helps to clarify the ideas. The third chapter contains an analysis of one-dimensional gas iv flow, from a mildly modern point of view. Weak solutions, Riemann problems, Glimm's scheme, and combustion waves are discussed. The style is informal and no attempt was made to hide the authors' biases and interests.