Mathematical Stories Ii Recursion Divisibility And Proofs

Download Mathematical Stories Ii Recursion Divisibility And Proofs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Stories Ii Recursion Divisibility And Proofs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematical Stories II - Recursion, Divisibility and Proofs

Author: Susanne Schindler-Tschirner
language: en
Publisher: Springer Nature
Release Date: 2023-04-13
Using field-tested, carefully crafted units of study, the authors in this essential teach fundamental mathematical techniques that are relevant well beyond the elementary school years. In this Volume II, the Gaussian summation formula and a recursion formula are derived and applied. Tasks on divisibility, prime factors and divisors follow. For calculating with remainders, the modulo calculation is introduced and applied. Students learn to perform proofs in a variety of contexts. As in Volume I, "Graphs, Games, and Proofs," the tasks encourage mathematical thinking skills, imagination, and creativity. The detailed sample solutions are designed for non-mathematicians. This book is a translation of the original German 1st edition Mathematische Geschichten II – Rekursion, Teilbarkeit und Beweise by Susanne Schindler-Tschirner and Werner Schindler, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Introduction · to Mathematical Structures and · Proofs

Author: Larry Gerstein
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-21
This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the rudiments of logic, set theory, equivalence relations, and other basic mathematical raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried the students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the sophisticated blend of knowledge, disci pline, and creativity that we call "mathematical maturity. " I don't believe that "theorem-proving" can be taught any more than "question-answering" can be taught. Nevertheless, I have found that it is possible to guide stu dents gently into the process of mathematical proof in such a way that they become comfortable with the experience and begin asking them selves questions that will lead them in the right direction.
Introduction to Mathematical Structures and Proofs

Author: Larry J. Gerstein
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-06-05
As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com forinstructors adopting the text for a course.