Mathematical Problems Of Control Theory


Download Mathematical Problems Of Control Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Problems Of Control Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Unsolved Problems in Mathematical Systems and Control Theory


Unsolved Problems in Mathematical Systems and Control Theory

Author: Vincent D. Blondel

language: en

Publisher: Princeton University Press

Release Date: 2009-04-11


DOWNLOAD





This book provides clear presentations of more than sixty important unsolved problems in mathematical systems and control theory. Each of the problems included here is proposed by a leading expert and set forth in an accessible manner. Covering a wide range of areas, the book will be an ideal reference for anyone interested in the latest developments in the field, including specialists in applied mathematics, engineering, and computer science. The book consists of ten parts representing various problem areas, and each chapter sets forth a different problem presented by a researcher in the particular area and in the same way: description of the problem, motivation and history, available results, and bibliography. It aims not only to encourage work on the included problems but also to suggest new ones and generate fresh research. The reader will be able to submit solutions for possible inclusion on an online version of the book to be updated quarterly on the Princeton University Press website, and thus also be able to access solutions, updated information, and partial solutions as they are developed.

Mathematical Control Theory and Finance


Mathematical Control Theory and Finance

Author: Andrey Sarychev

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-03-31


DOWNLOAD





Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to ”real life” problems, as is the case in robotics, control of industrial processes or ?nance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.

Mathematical Control Theory


Mathematical Control Theory

Author: Eduardo D. Sontag

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-21


DOWNLOAD





Mathematics is playing an ever more important role in the physical and biologi cal sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and rein force the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and to encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematics Sci ences (AMS) series, which will focus on advanced textbooks and research-level monographs. v Preface to the Second Edition The most significant differences between this edition and the first are as follows: • Additional chapters and sections have been written, dealing with: nonlinear controllability via Lie-algebraic methods, variational and numerical approaches to nonlinear control, including a brief introduction to the Calculus of Variations and the Minimum Principle, - time-optimal control of linear systems, feedback linearization (single-input case), nonlinear optimal feedback, controllability of recurrent nets, and controllability of linear systems with bounded controls.