Mathematical Problems Of Classical Nonlinear Electromagnetic Theory


Download Mathematical Problems Of Classical Nonlinear Electromagnetic Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Problems Of Classical Nonlinear Electromagnetic Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mathematical Problems of Classical Nonlinear Electromagnetic Theory


Mathematical Problems of Classical Nonlinear Electromagnetic Theory

Author: Frederick Bloom

language: en

Publisher: CRC Press

Release Date: 2020-11-29


DOWNLOAD





A survey of some problems of current interest in the realm of classical nonlinear electromagnetic theory.

Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow


Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow

Author: Hamid Bellout

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-19


DOWNLOAD





The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model. A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory. This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

Electromagnetism of Continuous Media


Electromagnetism of Continuous Media

Author: Mauro Fabrizio

language: en

Publisher: Oxford University Press

Release Date: 2003-06-05


DOWNLOAD





For graduate students and researchers, this self contained text provides a carefully structured, coherent, and comprehensive treatment of the mathematical modelling in electromagnetism of continuous media. The authors provide a systematic review of known subjects along with many original results. Part I reviews basic notions and approaches in electromagnetism (Maxwell's equations, Green's functions, harmonic fields, dispersive effects) and emphasizes the physical motivation for the modelling of non-conventional materials. The frequency-dependent properties (such as conductivity, polarizability, and magnetizability), which enter wave diffraction and dispersion, are shown, and these lead to a discussion of models of materials with fading memory in the time domain. Part II develops the thermodynamics of electromagnetic and thermoelectromagnetic materials with memory and provides a systematic account of thermodynamic restrictions. Existence, uniqueness and stability problems are investigated. Also, variational formulations and wave propagation solution are established. Part III is devoted to more involved models which are motivated by the interest in materials and structures with non-conventional properties. The mathematical modelling deals with non-linearity, non-locality and hysteresis. In non-linear materials attention is focussed on the generation of harmonics and in discontinuity waves. Non-locality is examined in a general way and hence is applied to superconductivity. Hysteresis is developed for magnetism. A review of known schemes is given along with new results about the modelling of hysteresis loops. The wide application of technologies in new mechanical, electronic and biomedical systems calls for materials and structures with non-conventional properties (e.g materials with 'memory'). Of equal importance is the understanding of the physical behaviour of these materials and consequently developing mathematical modelling techniques for prediction. Includes appendices that include some properties of Bessel functions, Fourier transforms and Sobolev spaces, compact operators and eigenfunctions, differential operators in curvilinear coordinates, and finite formulation of electromagnetism.