Mathematical Physics Problems Of Quantum Field Theory

Download Mathematical Physics Problems Of Quantum Field Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Physics Problems Of Quantum Field Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Many-Body Problems and Quantum Field Theory

Author: Philippe Andre Martin
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
Many-Body Problems and Quantum Field Theory introduces the concepts and methods of the topics on a level suitable for graduate students and researchers. The formalism is developed in close conjunction with the description of a number of physical systems: cohesion and dielectric properties of the electron gas, superconductivity, superfluidity, nuclear matter and nucleon pairing, matter and radiation, interaction of fields by particle exchange and mass generation. Emphasis is placed on analogies between the various systems rather than on advanced or specialized aspects, with the purpose of illustrating common ideas within different domains of physics. Starting from a basic knowledge of quantum mechanics and classical electromagnetism, the exposition is self-contained and explicitly details all steps of the derivations. The new edition features a subtantially new treatment of nucleon pairing.
Functional Integrals in Quantum Field Theory and Statistical Physics

Author: V.N. Popov
language: en
Publisher: Springer Science & Business Media
Release Date: 2001-11-30
Functional integration is one of the most powerful methods of contempo rary theoretical physics, enabling us to simplify, accelerate, and make clearer the process of the theoretician's analytical work. Interest in this method and the endeavour to master it creatively grows incessantly. This book presents a study of the application of functional integration methods to a wide range of contemporary theoretical physics problems. The concept of a functional integral is introduced as a method of quantizing finite-dimensional mechanical systems, as an alternative to ordinary quantum mechanics. The problems of systems quantization with constraints and the manifolds quantization are presented here for the first time in a monograph. The application of the functional integration methods to systems with an infinite number of degrees of freedom allows one to uniquely introduce and formulate the diagram perturbation theory in quantum field theory and statistical physics. This approach is significantly simpler than the widely accepted method using an operator approach.
Problems in Quantum Mechanics and Field Theory with Mathematical Modelling

In Problems in Quantum Mechanics and Field Theory with Mathematical Modelling, a number of exactly solvable problems in electrodynamics and in quantum-mechanics of particles with different spins are presented. The main topics covered include: the Cox scalar particle with intrinsic structure in presence of the magnetic field in the spaces of constant curvature, Euclid, Riemann, and Lobachevsky; Cox particle in the Coulomb field; tunneling effect through Schwarzschild barrier for a spin 1/2 particle; electromagnetic field in Schwarzschild space-time, the Majorana - Oppenheimer approach in electrodynamics; scalar particle with polarizability in the Coulomb field; Dirac particle in the Coulomb field on the background of hyperbolic Lobachevsky and spherical Riemann models; particle with spin 1 in the Coulomb field; geometrical modeling of the media in Maxwell electrodynamics; P-asymmetric equation for a spin 1/2 particle; fermion with two mass parameters in the Coulomb field; helicity operator for a spin 2 particle in presence of the magnetic field. The book will be of interest to researchers, and is accessible enough to serve as a self-study resources for courses at undergraduate and graduate levels.