Mathematical Foundations Of Quantum Information And Computation And Its Applications To Nano And Bio Systems

Download Mathematical Foundations Of Quantum Information And Computation And Its Applications To Nano And Bio Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Foundations Of Quantum Information And Computation And Its Applications To Nano And Bio Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems

Author: Masanori Ohya
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-01-15
This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
Quantum Adaptivity in Biology: From Genetics to Cognition

This book examines information processing performed by bio-systems at all scales: from genomes, cells and proteins to cognitive and even social systems. It introduces a theoretical/conceptual principle based on quantum information and non-Kolmogorov probability theory to explain information processing phenomena in biology as a whole. The book begins with an introduction followed by two chapters devoted to fundamentals, one covering classical and quantum probability, which also contains a brief introduction to quantum formalism, and another on an information approach to molecular biology, genetics and epigenetics. It then goes on to examine adaptive dynamics, including applications to biology, and non-Kolmogorov probability theory. Next, the book discusses the possibility to apply the quantum formalism to model biological evolution, especially at the cellular level: genetic and epigenetic evolutions. It also presents a model of the epigenetic cellular evolution based on the mathematical formalism of open quantum systems. The last two chapters of the book explore foundational problems of quantum mechanics and demonstrate the power of usage of positive operator valued measures (POVMs) in biological science. This book will appeal to a diverse group of readers including experts in biology, cognitive science, decision making, sociology, psychology, and physics; mathematicians working on problems of quantum probability and information and researchers in quantum foundations.
Quantum Foundations, Probability and Information

Composed of contributions from leading experts in quantum foundations, this volume presents viewpoints on a number of complex problems through informational, probabilistic, and mathematical perspectives and features novel mathematical models of quantum and subquantum phenomena. Rich with multi-disciplinary mathematical content, this book includes applications of partial differential equations in quantum field theory, differential geometry, oscillatory processes and vibrations, and Feynman integrals for quickly growing potential functions. Due to rapid growth in the field in recent years, this volume aims to promote interdisciplinary collaboration in the areas of quantum probability, information, communication and foundation, and mathematical physics. Many papers discuss complex yet novel problems that depart from the mainstream of quantum physical studies. Others devote explanation to fundamental problems of the conventional quantum theory, including its mathematical formalism. Overall, authors cover a diverse set of topics, including quantum and classical field theory and oscillatory processing, quantum mechanics from a Darwinian evolutionary perspective, and biological applications of quantum theory. Together in one volume, these essays will be useful to experts in the corresponding areas of quantum theory. Theoreticians, experimenters, mathematicians, and even philosophers in quantum physics and quantum probability and information theory can consider this book a valuable resource.