Mathematical And Numerical Aspects Of Wave Propagation Waves 2003


Download Mathematical And Numerical Aspects Of Wave Propagation Waves 2003 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical And Numerical Aspects Of Wave Propagation Waves 2003 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mathematical and Numerical Aspects of Wave Propagation WAVES 2003


Mathematical and Numerical Aspects of Wave Propagation WAVES 2003

Author: Gary Cohen

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This volume includes articles on the mathematical modeling and numerical simulation of various wave phenomena. For many years Waves 2003 and its five prior conferences have been an important forum for discussions on wave propagation. The topic is equally important for fundamental sciences, engineering, mathematics and, in particular, for industrial applications. Areas of specific interest are acoustics, electromagnetics, elasticity and related inverse and optimization problems. This book gives an extensive overview of recent developments in a very active field of scientific computing.

Proceedings of the St. Petersburg Mathematical Society, Volume XIV


Proceedings of the St. Petersburg Mathematical Society, Volume XIV

Author: Sankt-Peterburgskoe matematicheskoe obshchestvo

language: en

Publisher: American Mathematical Soc.

Release Date: 2009


DOWNLOAD





Contains articles on analysis, probability, partial differential operators, frames, and other areas of mathematics. This volume also contains a comprehensive article about the classification of pseudo-regular convex polyhedra. It is suitable for a broad group of graduate students and researchers interested in the topics presented here.

Handbook of Differential Equations: Evolutionary Equations


Handbook of Differential Equations: Evolutionary Equations

Author: C.M. Dafermos

language: en

Publisher: Elsevier

Release Date: 2009-04-29


DOWNLOAD





Handbook of Differential Equations: Evolutionary Equations is the last text of a five-volume reference in mathematics and methodology. This volume follows the format set by the preceding volumes, presenting numerous contributions that reflect the nature of the area of evolutionary partial differential equations. The book is comprised of five chapters that feature the following: - A thorough discussion of the shallow-equations theory, which is used as a model for water waves in rivers, lakes and oceans. It covers the issues of modeling, analysis and applications - • Evaluation of the singular limits of reaction-diffusion systems, where the reaction is fast compared to the other processes; and applications that range from the theory of the evolution of certain biological processes to the phenomena of Turing and cross-diffusion instability - Detailed discussion of numerous problems arising from nonlinear optics, at the high-frequency and high-intensity regime • Geometric and diffractive optics, including wave interactions - Presentation of the issues of existence, blow-up and asymptotic stability of solutions, from the equations of solutions to the equations of linear and non-linear thermoelasticity - Answers to questions about unique space, such as continuation and backward uniqueness for linear second-order parabolic equations. Research mathematicians, mathematics lecturers and instructors, and academic students will find this book invaluable - Review of new results in the area - Continuation of previous volumes in the handbook series covering evolutionary PDEs - New content coverage of DE applications