Math Mutation Classics


Download Math Mutation Classics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Math Mutation Classics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Math Mutation Classics


Math Mutation Classics

Author: Erik Seligman

language: en

Publisher: Apress

Release Date: 2016-04-22


DOWNLOAD





Use math in unique ways to analyze things you observe in life and use proof to attain the unexpected. There is quite a wide diversity of topics here and so all age levels and ability levels will enjoy the discussions. You'll see how the author's unique viewpoint puts a mathematical spin on everything from politicians to hippos. Along the way, you will enjoy the different point of view and hopefully it will open you up to a slightly more out-of-the-box way of thinking. Did you know that sometimes 2+2 equals 5? That wheels don't always have to be round? That you can mathematically prove there is a hippopotamus in your basement? Or how to spot four-dimensional beings as they pass through your kitchen? If not, then you need to read this book! Math Mutation Classics is a collection of Erik Seligman's blog articles from Math Mutation at MathMutation.com. Erik has been creating podcasts and converting them in his blog for many years. Now, he has collected what he believes to be the most interesting among them, and has edited and organized them into a book that is often thought provoking, challenging, and fun. What You Will Learn View the world and problems in different ways through math. Apply mathematics to things you thought unimaginable. Abstract things that are not taught in school. Who this Book is For Teenagers, college level students, and adults who can gain from the many different ways of looking at problems and feed their interest in mathematics.

Mathematical Omnibus


Mathematical Omnibus

Author: D. B. Fuks

language: en

Publisher: American Mathematical Soc.

Release Date: 2007


DOWNLOAD





The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.

The Quasispecies Equation and Classical Population Models


The Quasispecies Equation and Classical Population Models

Author: Raphaël Cerf

language: en

Publisher: Springer Nature

Release Date: 2022-07-30


DOWNLOAD





This monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen’s famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers. It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the Wright–Fisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes. Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation. This book will be of interest to mathematicians and theoretical ecologists/biologists working with finite population models.