Materials Science And Engineering Problems With Solutions

Download Materials Science And Engineering Problems With Solutions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Materials Science And Engineering Problems With Solutions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
MATERIALS SCIENCE AND ENGINEERING : PROBLEMS WITH SOLUTIONS

Author: SHETTY, M.N.
language: en
Publisher: PHI Learning Pvt. Ltd.
Release Date: 2015-12-01
This book, with analytical solutions to 260 select problems, is primarily designed for the second year core course on materials science. The treatment of the book reflects the author’s experience of teaching this course comprehensively at IIT-Kanpur for a number of years to the students of engineering and 5-year integrated disciplines. The problems have been categorised into five sections covering a wide range of solid state properties. Section 1 deals with the dual representation of a wave and a particle and then comprehensively explains the behaviour of particles within potential barriers. It provides solutions to the problems that how the energy levels of a free atom lead to the formation of energy bands in solids. The statistics of the distribution of particles in different energy states in a solid has been detailed leading to the derivation of Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac statistics and their mutual relationships. Quantitative derivation of the Fermi energy has been obtained by considering free electron energy distribution in solids and then considering Fermi–Dirac distribution as a function of temperature. The derivation of the Richardson’s equation and the related work function has been quantitatively dealt with. The phenomenon of tunnelling has been dealt with in terms of quantum mechanics, whereas the band structure and electronic properties of materials are given quantitative treatment by using Fermi–Dirac distribution function. Section 2 deals with the nature of the chemical bonds, types of bonds and their effect on properties, followed by a detailed presentation of crystal structures of some common materials and a discussion on the structures of C60 and carbon nanotubes. Coordination and packing in crystal structures are considered next followed by a detailed X-ray analysis of simple crystal structures, imperfections in crystals, diffusion, phase equilibria, and mechanical behaviour. Section 3 deals with thermal and electrical properties and their mutual relationships. Calculations of Debye frequency, Debye temperature, and Debye specific heat are presented in great detail. A brief section on superconductivity considers both the conventional and the high–TC superconductors. Sections 4 and 5 deal with the magnetic and dielectric materials, considering magnetic properties from the point of view of the band theory of solids. Crystal structures of some common ferrites are given in detail. Similarly, the displacement characteristics in dielectrics are considered from their charge displacements giving rise to some degree of polarization in the materials.
The Science and Engineering of Materials

The Science and Engineering of Materials, Third Edition, continues the general theme of the earlier editions in providing an understanding of the relationship between structure, processing, and properties of materials. This text is intended for use by students of engineering rather than materials, at first degree level who have completed prerequisites in chemistry, physics, and mathematics. The author assumes these stu dents will have had little or no exposure to engineering sciences such as statics, dynamics, and mechanics. The material presented here admittedly cannot and should not be covered in a one-semester course. By selecting the appropriate topics, however, the instructor can emphasise metals, provide a general overview of materials, concentrate on mechani cal behaviour, or focus on physical properties. Additionally, the text provides the student with a useful reference for accompanying courses in manufacturing, design, or materials selection. In an introductory, survey textsuch as this, complex and comprehensive design problems cannot be realistically introduced because materials design and selection rely on many factors that come later in the student's curriculum. To introduce the student to elements of design, however, more than 100 examples dealing with materials selection and design considerations are included in this edition.
Materials Science and Engineering

Building on the extraordinary success of seven best-selling editions, Callister's new Eighth Edition of Materials Science and Engineering continues to promote student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties. Supported by WileyPLUS, an integrated online learning environment containing the highly respected Virtual Materials Science and Engineering Lab (VMSE), a materials property database referenced to problems in the text, and new modules in tensile testing, diffusion, and solid solutions (all referenced to problems in the text) This text is an unbound, three hole punched version.