Mastering Parallel Programming With R

Download Mastering Parallel Programming With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Parallel Programming With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mastering Parallel Programming with R

Author: Simon R. Chapple
language: en
Publisher: Packt Publishing Ltd
Release Date: 2016-05-31
Master the robust features of R parallel programming to accelerate your data science computations About This Book Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest Become an expert in writing the most efficient and highest performance parallel algorithms in R Get to grips with the concept of parallelism to accelerate your existing R programs Who This Book Is For This book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks. What You Will Learn Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS) Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages Build and extend a parallel R package (SPRINT) with your own MPI-based routines Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them Build a task farm master-worker, spatial grid, and hybrid parallel R programs In Detail R is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources. Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems. Style and approach This book leads you chapter by chapter from the easy to more complex forms of parallelism. The author's insights are presented through clear practical examples applied to a range of different problems, with comprehensive reference information for each of the R packages employed. The book can be read from start to finish, or by dipping in chapter by chapter, as each chapter describes a specific parallel approach and technology, so can be read as a standalone.
Algorithms and Architectures for Parallel Processing

This four volume set LNCS 9528, 9529, 9530 and 9531 constitutes the refereed proceedings of the 15th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2015, held in Zhangjiajie, China, in November 2015. The 219 revised full papers presented together with 77 workshop papers in these four volumes were carefully reviewed and selected from 807 submissions (602 full papers and 205 workshop papers). The first volume comprises the following topics: parallel and distributed architectures; distributed and network-based computing and internet of things and cyber-physical-social computing. The second volume comprises topics such as big data and its applications and parallel and distributed algorithms. The topics of the third volume are: applications of parallel and distributed computing and service dependability and security in distributed and parallel systems. The covered topics of the fourth volume are: software systems and programming models and performance modeling and evaluation.
Mastering Spark with R

Author: Javier Luraschi
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2019-10-07
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions