Mastering Mlops Architecture From Code To Deployment

Download Mastering Mlops Architecture From Code To Deployment PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Mlops Architecture From Code To Deployment book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mastering MLOps Architecture: From Code to Deployment

Harness the power of MLOps for managing real time machine learning project cycle KEY FEATURES ● Comprehensive coverage of MLOps concepts, architecture, tools and techniques. ● Practical focus on building end-to-end ML Systems for Continual Learning with MLOps. ● Actionable insights on CI/CD, monitoring, continual model training and automated retraining. DESCRIPTION MLOps, a combination of DevOps, data engineering, and machine learning, is crucial for delivering high-quality machine learning results due to the dynamic nature of machine learning data. This book delves into MLOps, covering its core concepts, components, and architecture, demonstrating how MLOps fosters robust and continuously improving machine learning systems. By covering the end-to-end machine learning pipeline from data to deployment, the book helps readers implement MLOps workflows. It discusses techniques like feature engineering, model development, A/B testing, and canary deployments. The book equips readers with knowledge of MLOps tools and infrastructure for tasks like model tracking, model governance, metadata management, and pipeline orchestration. Monitoring and maintenance processes to detect model degradation are covered in depth. Readers can gain skills to build efficient CI/CD pipelines, deploy models faster, and make their ML systems more reliable, robust and production-ready. Overall, the book is an indispensable guide to MLOps and its applications for delivering business value through continuous machine learning and AI. WHAT YOU WILL LEARN ● Architect robust MLOps infrastructure with components like feature stores. ● Leverage MLOps tools like model registries, metadata stores, pipelines. ● Build CI/CD workflows to deploy models faster and continually. ● Monitor and maintain models in production to detect degradation. ● Create automated workflows for retraining and updating models in production. WHO THIS BOOK IS FOR Machine learning specialists, data scientists, DevOps professionals, software development teams, and all those who want to adopt the DevOps approach in their agile machine learning experiments and applications. Prior knowledge of machine learning and Python programming is desired. TABLE OF CONTENTS 1. Getting Started with MLOps 2. MLOps Architecture and Components 3. MLOps Infrastructure and Tools 4. What are Machine Learning Systems? 5. Data Preparation and Model Development 6. Model Deployment and Serving 7. Continuous Delivery of Machine Learning Models 8. Continual Learning 9. Continuous Monitoring, Logging, and Maintenance
Cyber Forensics Up and Running

Empowering you to investigate, analyze, and secure the digital realm KEY FEATURES ● Comprehensive coverage of all digital forensics concepts. ● Real-world case studies and examples to illustrate techniques. ● Step-by-step instructions for setting up and using essential forensic tools. ● In-depth exploration of volatile and non-volatile data analysis. DESCRIPTION Digital forensics is the art and science of extracting the hidden truth and this book is your hands-on companion, bringing the world of digital forensics to life. Starting with the core principles of digital forensics, the book explores the significance of various case types, the interconnectedness of the field with cybersecurity, and the ever-expanding digital world's challenges. As you progress, you will explore data acquisition, image formats, digital evidence preservation, file carving, metadata extraction, and the practical use of essential forensic tools like HxD, The Sleuth Kit, Autopsy, Volatility, and PowerForensics. The book offers step-by-step instructions, real-world case studies, and practical examples, ensuring that beginners can confidently set up and use forensic tools. Experienced professionals, on the other hand, will find advanced insights into memory analysis, network forensics, anti-forensic techniques, and more. This book empowers you to become a digital detective, capable of uncovering data secrets, investigating networks, exploring volatile and non-volatile evidence, and understanding the intricacies of modern browsers and emails. WHAT YOU WILL LEARN ● Learn how to set up and use digital forensic tools, including virtual environments. ● Learn about live forensics, incident response, and timeline examination. ● In-depth exploration of Windows Registry and USBs. ● Network forensics, PCAPs, and malware scenarios. ● Memory forensics, malware detection, and file carving. ● Advance tools like PowerForensics and Autopsy. WHO THIS BOOK IS FOR Whether you are a tech-savvy detective, a curious student, or a seasoned cybersecurity pro seeking to amplify your skillset. Network admins, law enforcement officers, incident responders, aspiring analysts, and even legal professionals will find invaluable tools and techniques within these pages. TABLE OF CONTENTS 1. Introduction to Essential Concepts of Digital Forensics 2. Digital Forensics Lab Setup 3. Data Collection: Volatile and Non-Volatile 4. Forensics Analysis: Live Response 5. File System and Log Analysis 6. Windows Registry and Artifacts 7. Network Data Collection and Analysis 8. Memory Forensics: Techniques and Tools 9. Browser and Email Forensics 10. Advanced Forensics Tools, Commands and Methods 11. Anti-Digital Forensics Techniques and Methods
Mastering Azure Machine Learning

Author: Christoph Körner
language: en
Publisher: Packt Publishing Ltd
Release Date: 2020-04-30
Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes Key FeaturesMake sense of data on the cloud by implementing advanced analyticsTrain and optimize advanced deep learning models efficiently on Spark using Azure DatabricksDeploy machine learning models for batch and real-time scoring with Azure Kubernetes Service (AKS)Book Description The increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud. The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps—DevOps for ML to automate your ML process as CI/CD pipeline. By the end of this book, you'll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure. What you will learnSetup your Azure Machine Learning workspace for data experimentation and visualizationPerform ETL, data preparation, and feature extraction using Azure best practicesImplement advanced feature extraction using NLP and word embeddingsTrain gradient boosted tree-ensembles, recommendation engines and deep neural networks on Azure Machine LearningUse hyperparameter tuning and Azure Automated Machine Learning to optimize your ML modelsEmploy distributed ML on GPU clusters using Horovod in Azure Machine LearningDeploy, operate and manage your ML models at scaleAutomated your end-to-end ML process as CI/CD pipelines for MLOpsWho this book is for This machine learning book is for data professionals, data analysts, data engineers, data scientists, or machine learning developers who want to master scalable cloud-based machine learning architectures in Azure. This book will help you use advanced Azure services to build intelligent machine learning applications. A basic understanding of Python and working knowledge of machine learning are mandatory.