Mastering Large Datasets


Download Mastering Large Datasets PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Large Datasets book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mastering Large Datasets with Python


Mastering Large Datasets with Python

Author: John Wolohan

language: en

Publisher: Simon and Schuster

Release Date: 2020-01-15


DOWNLOAD





Summary Modern data science solutions need to be clean, easy to read, and scalable. In Mastering Large Datasets with Python, author J.T. Wolohan teaches you how to take a small project and scale it up using a functionally influenced approach to Python coding. You’ll explore methods and built-in Python tools that lend themselves to clarity and scalability, like the high-performing parallelism method, as well as distributed technologies that allow for high data throughput. The abundant hands-on exercises in this practical tutorial will lock in these essential skills for any large-scale data science project. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Programming techniques that work well on laptop-sized data can slow to a crawl—or fail altogether—when applied to massive files or distributed datasets. By mastering the powerful map and reduce paradigm, along with the Python-based tools that support it, you can write data-centric applications that scale efficiently without requiring codebase rewrites as your requirements change. About the book Mastering Large Datasets with Python teaches you to write code that can handle datasets of any size. You’ll start with laptop-sized datasets that teach you to parallelize data analysis by breaking large tasks into smaller ones that can run simultaneously. You’ll then scale those same programs to industrial-sized datasets on a cluster of cloud servers. With the map and reduce paradigm firmly in place, you’ll explore tools like Hadoop and PySpark to efficiently process massive distributed datasets, speed up decision-making with machine learning, and simplify your data storage with AWS S3. What's inside An introduction to the map and reduce paradigm Parallelization with the multiprocessing module and pathos framework Hadoop and Spark for distributed computing Running AWS jobs to process large datasets About the reader For Python programmers who need to work faster with more data. About the author J. T. Wolohan is a lead data scientist at Booz Allen Hamilton, and a PhD researcher at Indiana University, Bloomington. Table of Contents: PART 1 1 ¦ Introduction 2 ¦ Accelerating large dataset work: Map and parallel computing 3 ¦ Function pipelines for mapping complex transformations 4 ¦ Processing large datasets with lazy workflows 5 ¦ Accumulation operations with reduce 6 ¦ Speeding up map and reduce with advanced parallelization PART 2 7 ¦ Processing truly big datasets with Hadoop and Spark 8 ¦ Best practices for large data with Apache Streaming and mrjob 9 ¦ PageRank with map and reduce in PySpark 10 ¦ Faster decision-making with machine learning and PySpark PART 3 11 ¦ Large datasets in the cloud with Amazon Web Services and S3 12 ¦ MapReduce in the cloud with Amazon’s Elastic MapReduce

Mastering Large Datasets


Mastering Large Datasets

Author: J. T. Wolohan

language: en

Publisher: Manning Publications

Release Date: 2020-01-06


DOWNLOAD





With an emphasis on clarity, style, and performance, author J.T. Wolohan expertly guides you through implementing a functionally-influenced approach to Python coding. You'll get familiar with Python's functional built-ins like the functools operator and itertools modules, as well as the toolz library. Mastering Large Datasets teaches you to write easily readable, easily scalable Python code that can efficiently process large volumes of structured and unstructured data. By the end of this comprehensive guide, you'll have a solid grasp on the tools and methods that will take your code beyond the laptop and your data science career to the next level! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Mastering Large Language Models


Mastering Large Language Models

Author: Sanket Subhash Khandare

language: en

Publisher: BPB Publications

Release Date: 2024-03-12


DOWNLOAD





Do not just talk AI, build it: Your guide to LLM application development KEY FEATURES ● Explore NLP basics and LLM fundamentals, including essentials, challenges, and model types. ● Learn data handling and pre-processing techniques for efficient data management. ● Understand neural networks overview, including NN basics, RNNs, CNNs, and transformers. ● Strategies and examples for harnessing LLMs. DESCRIPTION Transform your business landscape with the formidable prowess of large language models (LLMs). The book provides you with practical insights, guiding you through conceiving, designing, and implementing impactful LLM-driven applications. This book explores NLP fundamentals like applications, evolution, components and language models. It teaches data pre-processing, neural networks , and specific architectures like RNNs, CNNs, and transformers. It tackles training challenges, advanced techniques such as GANs, meta-learning, and introduces top LLM models like GPT-3 and BERT. It also covers prompt engineering. Finally, it showcases LLM applications and emphasizes responsible development and deployment. With this book as your compass, you will navigate the ever-evolving landscape of LLM technology, staying ahead of the curve with the latest advancements and industry best practices. WHAT YOU WILL LEARN ● Grasp fundamentals of natural language processing (NLP) applications. ● Explore advanced architectures like transformers and their applications. ● Master techniques for training large language models effectively. ● Implement advanced strategies, such as meta-learning and self-supervised learning. ● Learn practical steps to build custom language model applications. WHO THIS BOOK IS FOR This book is tailored for those aiming to master large language models, including seasoned researchers, data scientists, developers, and practitioners in natural language processing (NLP). TABLE OF CONTENTS 1. Fundamentals of Natural Language Processing 2. Introduction to Language Models 3. Data Collection and Pre-processing for Language Modeling 4. Neural Networks in Language Modeling 5. Neural Network Architectures for Language Modeling 6. Transformer-based Models for Language Modeling 7. Training Large Language Models 8. Advanced Techniques for Language Modeling 9. Top Large Language Models 10. Building First LLM App 11. Applications of LLMs 12. Ethical Considerations 13. Prompt Engineering 14. Future of LLMs and Its Impact