Mastering Data Mining

Download Mastering Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
MASTERING DATA MINING: THE ART AND SCIENCE OF CUSTOMER RELATIONSHIP MANAGEMENT

Special Features: · Best-in-class data mining techniques for solving critical problems in all areas of business· Explains how to pick the right data mining techniques for specific problems· Shows how to perform analysis and evaluate results· Features real-world examples from across various industry sectors· Companion Web site with updates on data mining products and service providers About The Book: Companies have invested in building data warehouses to capture vast amounts of customer information. The payoff comes with mining or getting access to the data within this information gold mine to make better business decisions. Readers and reviewers loved Berry and Linoff's first book, Data Mining Techniques, because the authors so clearly illustrate practical techniques with real benefits for improved marketing and sales. Mastering Data Mining takes off from there-assuming readers know the basic techniques covered in the first book, the authors focus on how to best apply these techniques to real business cases. They start with simple applications and work up to the most powerful and sophisticated examples over the course of about 20 cases. (Ralph Kimball used this same approach in his highly successful Data Warehouse Toolkit). As with their first book, Mastering Data Mining is sufficiently technical for database analysts, but is accessible to technically savvy business and marketing managers. It should also appeal to a new breed of database marketing managers.
Mastering Data Analysis with R

Gain sharp insights into your data and solve real-world data science problems with R--from data munging to modeling and visualizationAbout This Book* Handle your data with precision and care for optimal business intelligence* Restructure and transform your data to inform decision-making* Packed with practical advice and tips to help you get to grips with data miningWho This Book Is ForIf you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic.What You Will Learn* Connect to and load data from R's range of powerful databases* Successfully fetch and parse structured and unstructured data* Transform and restructure your data with efficient R packages* Define and build complex statistical models with glm* Develop and train machine learning algorithms* Visualize social networks and graph data* Deploy supervised and unsupervised classification algorithms* Discover how to visualize spatial data with RIn DetailR is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently.This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage.Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods.Style and approachCovering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.
Data Mining Techniques

Author: Michael J. A. Berry
language: en
Publisher: John Wiley & Sons
Release Date: 2004-04-09
Many companies have invested in building large databases and data warehouses capable of storing vast amounts of information. This book offers business, sales and marketing managers a practical guide to accessing such information.